3D printing of biomaterials for vascularized and innervated tissue regeneration

Hongjian Zhang, Chengtie Wu

Article ID: 706
Vol 9, Issue 3, 2023, Article identifier:

VIEWS - 115 (Abstract) 79 (PDF)


Neurovascular networks play significant roles in the metabolism and regeneration of many tissues and organs in the human body. Blood vessels can transport sufficient oxygen, nutrients, and biological factors, while nerve fibers transmit excitation signals to targeted cells. However, traditional scaffolds cannot satisfy the requirement of stimulating angiogenesis and innervation in a timely manner due to the complexity of host neurovascular networks. Three-dimensional (3D) printing, as a versatile and favorable technique, provides an effective approach to fabricating biological scaffolds with biomimetic architectures and multimaterial compositions, which are capable of regulating multiple cell behaviors. This review paper presents a summary of the current progress in 3D-printed biomaterials for vascularized and innervated tissue regeneration by presenting skin, bone, and skeletal muscle tissues as an example. In addition, we highlight the crucial roles of blood vessels and nerve fibers in the process of tissue regeneration and discuss the future perspectives for engineering novel biomaterials. It is expected that 3D-printed biomaterials with angiogenesis and innervation properties can not only recapitulate the physiological microenvironment of damaged tissues but also rapidly integrate with host neurovascular networks, resulting in accelerated functional tissue regeneration.


3D printing; Biomaterials; Vascularization; Innervation; Tissue regeneration

Full Text:

Download PDF

Included Database


Marrella A, Lee TY, Lee DH, et al., 2018, Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. Mater Today, 21(4):362–376. https://doi.org/10.1016/j.mattod.2017.10.005

Eugenis I, Wu D, Rando TA, 2021, Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials, 278:121173. https://doi.org/10.1016/j.biomaterials.2021.121173

Weng T, Wu P, Zhang W, et al., 2020, Regeneration of skin appendages and nerves: Current status and further challenges. J Trans Med, 18(1):1–17. https://doi.org/10.1186/s12967-020-02248-5

Wan Q-Q, Qin W-P, Shen M-J, et al., 2020, Simultaneous regeneration of bone and nerves through materials and architectural design: Are we there yet? Adv Funct Mater, 30(48):2003542. https://doi.org/10.1002/adfm.202003542

Ma J, Wu C, 2022, Bioactive inorganic particles-based biomaterials for skin tissue engineering. Exploration, 2(5):20210083. https://doi.org/10.1002/EXP.20210083

Gilbert-Honick J, Grayson W, 2020, Vascularized and innervated skeletal muscle tissue engineering. Adv Healthc Mater, 9(1):1900626. https://doi.org/10.1002/adhm.201900626

Beachley VZ, Wolf MT, Sadtler K, et al., 2015, Tissue matrix arrays for high-throughput screening and systems analysis of cell function. Nat Methods, 12(12): 1197-+. https://doi.org/10.1038/nmeth.3619

Marenzana M, Arnett TR, 2013, The key role of the blood supply to bone. Bone Res, 1:203–215. https://doi.org/10.4248/br201303001

Das S, Gordian-Velez WJ, Ledebur HC, et al., 2020, Innervation: The missing link for biofabricated tissues and organs. NPJ Regen Med, 5(1):1–17. https://doi.org/10.1038/s41536-020-0096-1

Su Y-W, Zhou X-F, Foster BK, et al., 2018, Roles of neurotrophins in skeletal tissue formation and healing. J Cell Physiol, 233(3): 2133–2145. https://doi.org/10.1002/jcp.25936

Chen W, Mao C, Zhuo L, et al., 2015, Beta-nerve growth factor promotes neurogenesis and angiogenesis during the repair of bone defects. Neural Regen Res, 10(7):1159–1165. https://doi.org/10.4103/1673-5374.160114

Mi J, Xu J, Yao H, et al., 2021, Calcitonin gene-related peptide enhances distraction osteogenesis by increasing angiogenesis. Tissue Eng Part A, 27(1-2):87-102. https://doi.org/10.1089/ten.tea.2020.0009

Guo Y, Chen H, Jiang Y, et al., 2020, CGRP regulates the dysfunction of peri-implant angiogenesis and osseointegration in streptozotocin-induced diabetic rats. Bone, 139:115464. https://doi.org/10.1016/j.bone.2020.115464

Bittner SM, Guo JL, Melchiorri A, et al., 2018, Three-dimensional printing of multilayered tissue engineering scaffolds. Mater Today, 21(8):861–874. https://doi.org/10.1016/j.mattod.2018.02.006

Heinrich MA, Liu W, Jimenez A, et al., 2019, 3D bioprinting: From benches to translational applications. Small, 15(23):1805510. https://doi.org/10.1002/smll.201805510

Li Q, Wang Z, 2013, Influence of mesenchymal stem cells with endothelial progenitor cells in co-culture on osteogenesis and angiogenesis: An in vitro study. Arch Med Res, 44(7):504–513. https://doi.org/10.1016/j.arcmed.2013.09.009

Street J, Bao M, deGuzman L, et al., 2002, Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA, 99(15):9656–9661. https://doi.org/10.1073/pnas.152324099

Laschke MW, Harder Y, Amon M, et al., 2006, Angiogenesis in tissue engineering: Breathing life into constructed tissue substitutes. Tissue Eng, 12(8):2093–2104. https://doi.org/10.1089/ten.2006.12.2093

Blais M, Parenteau-Bareil R, Cadau S, et al., 2013, Concise review: Tissue-engineered skin and nerve regeneration in burn treatment. Stem Cells Transl Med, 2(7):545–551. http://dx.doi.org/10.5966/sctm.2012-0181

Koons GL, Diba M, Mikos AG, 2020, Materials design for bone-tissue engineering. Nat Rev Mater, 5(8):584–603. https://doi.org/10.1038/s41578-020-0204-2

Ashrafi M, Baguneid M, Bayat A, 2016, The role of neuromediators and innervation in cutaneous wound healing. Acta Dermato-Venereol, 96(5):587-+. https://doi.org/10.2340/00015555-2321

Lumpkin EA, Caterina MJ, 2007, Mechanisms of sensory transduction in the skin. Nature, 445(7130):858–865. https://doi.org/10.1038/nature05662

Cheret J, Lebonvallet N, Buhe V, et al., 2014, Influence of sensory neuropeptides on human cutaneous wound healing process. J Dermatol Sci, 74(3):193–203. http://dx.doi.org/10.1016/j.jdermsci.2014.02.001

Theocharidis G, Veves A, 2020, Autonomic nerve dysfunction and impaired diabetic wound healing: The role of neuropeptides. Autonomic Neurosci Basic Clin, 223:102610. https://doi.org/10.1016/j.autneu.2019.102610

Blais M, Mottier L, Germain M-A, et al., 2014, Sensory neurons accelerate skin reepithelialization via substance P in an innervated tissue-engineered wound healing model. Tissue Eng Part A, 20(15-16):2180–2188. https://doi.org/10.1089/ten.tea.2013.0535

Sayilekshmy M, Hansen RB, Delaisse J-M, et al., 2019, Innervation is higher above bone remodeling surfaces and in cortical pores in human bone: Lessons from patients with primary hyperparathyroidism. Sci Rep, 9:5361. https://doi.org/10.1038/s41598-019-41779-w

Hohmann EL, Elde RP, Rysavy JA, et al., 1986, Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science, 232(4752):868–871. https://doi.org/10.1126/science.3518059

Wan Q-Q, Qin W-P, Ma Y-X, et al., 2021, Crosstalk between bone and nerves within bone. Adv Sci, 8(7):2003390. https://doi.org/10.1002/advs.202003390

Wang X-D, Li S-Y, Zhang S-J, et al., 2020, The neural system regulates bone homeostasis via mesenchymal stem cells: a translational approach. Theranostics, 10(11):4839–4850. https://doi.org/10.7150/thno.43771

He H, Chai J, Zhang S, et al., 2016, CGRP may regulate bone metabolism through stimulating osteoblast differentiation and inhibiting osteoclast formation. Mol Med Rep, 13(5):3977–3984. https://doi.org/10.3892/mmr.2016.5023

Graessel S, 2014, The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology. Arthritis Res Ther, 16(6):485. https://doi.org/10.1186/s13075-014-0485-1

Moore RE, Smith CK, Bailey CS, et al., 1993, Characterization of beta-adrenergic receptors on rat and human osteoblast-like cells and demonstration that beta-receptor agonists can stimulate bone resorption in organ culture. Bone Miner, 23(3):301–315. https://doi.org/10.1016/S0169-6009(08)80105-5

Katayama Y, Battista M, Kao W-M, et al., 2006, Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell, 124(2):407–421. https://doi.org/10.1016/j.cell.2005.10.041

Elefteriou F, 2018, Impact of the autonomic nervous system on the skeleton. Physiol Rev, 98(3):1083–1112. https://doi.org/10.1152/physrev.00014.2017

Sun S, Diggins NH, Gunderson ZJ, et al., 2020, No pain, no gain? The effects of pain-promoting neuropeptides and neurotrophins on fracture healing. Bone, 131:115109. https://doi.org/10.1016/j.bone.2019.115109

Meyers CA, Lee S, Sono T, et al., 2020, A neurotrophic mechanism directs sensory nerve transit in cranial bone. Cell Rep, 31(8):107696. https://doi.org/10.1016/j.celrep.2020.107696

Liu Q, Lei L, Yu T, et al., 2018, Effect of brain-derived neurotrophic factor on the neurogenesis and osteogenesis in bone engineering. Tissue Eng Part A, 24(15-16):1283–1292. https://doi.org/10.1089/ten.tea.2017.0462

Ai L-S, Sun C-Y, Zhang L, et al., 2012, Inhibition of BDNF in multiple myeloma blocks osteoclastogenesis via down-regulated stroma-derived RANKL expression both in vitro and in vivo. PLoS One, 7(10):e46287. https://doi.org/10.1371/journal.pone.0046287

Cai X-x, Luo E, Yuan Q, 2010, Interaction between schwann cells and osteoblasts in vitro. Int J Oral Sci, 2(2):74–81. https://doi.org/10.4248/ijos10039

Jones RE, Salhotra A, Robertson KS, et al., 2019, Skeletal stem cell-schwann cell circuitry in mandibular repair. Cell Rep, 28(11):2757–2766.e5. https://doi.org/10.1016/j.celrep.2019.08.021

Samandari M, Quint J, Rodriguez-delaRosa A, et al., 2022, Bioinks and bioprinting strategies for skeletal muscle tissue engineering. Adv Mater, 34(12):21105883. https://doi.org/10.1002/adma.202105883

Gilbert-Honick J, Iyer SR, Somers SM, et al., 2020, Engineering 3D skeletal muscle primed for neuromuscular regeneration following volumetric muscle loss. Biomaterials, 255:120154. https://doi.org/10.1016/j.biomaterials.2020.120154

Raffa P, Easler M, Urciuolo A, 2022, Three-dimensional in vitro models of neuromuscular tissue. Neural Regen Res, 17(4):759–766. https://doi.org/10.4103/1673-5374.322447

Carmeliet P, 2003, Blood vessels and nerves: Common signals, pathways and diseases. Nat Rev Genet, 4(9):710–720. https://doi.org/10.1038/nrg1158

Carmeliet P, Tessier-Lavigne M, 2005, Common mechanisms of nerve and blood vessel wiring. Nature, 436(7048): 193–200. https://doi.org/10.1038/nature03875

Morotti M, Vincent K, Brawn J, et al., 2014, Peripheral changes in endometriosis-associated pain. Hum Reprod Update, 20(5):717–736. https://doi.org/10.1093/humupd/dmu021

Raab S, Plate KH, 2007, Different networks, common growth factors: Shared growth factors and receptors of the vascular and the nervous system. Acta Neuropathol, 113(6):607–626. https://doi.org/10.1007/s00401-007-0228-3

Troullinaki M, Alexaki V-I, Mitroulis I, et al., 2019, Nerve growth factor regulates endothelial cell survival and pathological retinal angiogenesis. J Cell Mol Med, 23(4):2362–2371. https://doi.org/10.1111/jcmm.14002

Emanueli C, Salis MB, Pinna A, et al., 2002, Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation, 106(17):2257–2262. https://doi.org/10.1161/01.CIR.0000033971.56802.C5

Hecking I, Stegemann LN, Theis V, et al., 2022, Neuroprotective effects of VEGF in the enteric nervous system. Int J Mol Sci, 23(12):6756. https://doi.org/10.3390/ijms23126756

Huang Y, Zhang L, Ji Y, et al., 2023, A non-invasive smart scaffold for bone repair and monitoring. Bioact Mater, 19:499–510. https://doi.org/10.1016/j.bioactmat.2022.04.034

Murphy SV, De Coppi P, Atala A, 2020, Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng, 4(4):370–380. https://doi.org/10.1038/s41551-019-0471-7

Cheng L, Cai Z, Ye T, et al., 2020, Injectable polypeptide-protein hydrogels for promoting infected wound healing. Adv Funct Mater, 30(25):2001196. https://doi.org/10.1002/adfm.202001196

Yang H, Lai C, Xuan C, et al., 2020, Integrin-binding pro-survival peptide engineered silk fibroin nanosheets for diabetic wound healing and skin regeneration. Chem Eng J, 398:125617. https://doi.org/10.1016/j.cej.2020.125617

Yao S, Wang Y, Chi J, et al., 2022, Porous MOF microneedle array patch with photothermal responsive nitric oxide delivery for wound healing. Adv Sci, 9(3):2103449. https://doi.org/10.1002/advs.202103449

Chen H, Guo Y, Zhang Z, et al., 2022, Symbiotic algae-bacteria dressing for producing hydrogen to accelerate diabetic wound healing. Nano Lett, 22(1):229–237. https://doi.org/10.1021/acs.nanolett.1c03693

Yao S, Chi J, Wang Y, et al., 2021, Zn-MOF encapsulated antibacterial and degradable microneedles array for promoting wound healing. Adv Healthc Mater, 10(12):2100056. https://doi.org/10.1002/adhm.202100056

Yin M, Wu J, Deng M, et al., 2021, Multifunctional magnesium organic framework-based microneedle patch for accelerating diabetic wound healing. Acs Nano, 15(11):17842–17853. https://doi.org/10.1021/acsnano.1c06036

Deng Z, Li M, Hu Y, et al., 2021, Injectable biomimetic hydrogels encapsulating Gold/metal-organic frameworks nanocomposites for enhanced antibacterial and wound healing activity under visible light actuation. Chem Eng J, 420:129668. https://doi.org/10.1016/j.cej.2021.129668

Xiao J, Zhu Y, Huddleston S, et al., 2018, Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano, 12(2):1023–1032. https://doi.org/10.1021/acsnano.7b01850

Zhao X, Wu H, Guo B, et al., 2017, Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 122:34–47. https://doi.org/10.1016/j.biomaterials.2017.01.011

Ibanez RIR, do Amaral RJFC, Simpson CR, et al., 2022, 3D printed scaffolds incorporated with platelet-rich plasma show enhanced angiogenic potential while not inducing fibrosis. Adv Funct Mater, 32(10):2109915. https://doi.org/10.1002/adfm.202109915

Wang X, Yu Y, Yang C, et al., 2022, Dynamically responsive scaffolds from microfluidic 3D printing for skin flap regeneration. Adv Sci, 9(22):2201155. https://doi.org/10.1002/advs.202201155

Alizadehgiashi M, Nemr CR, Chekini M, et al., 2021, Multifunctional 3D-printed wound dressings. ACS Nano, 15(7):12375–12387. https://doi.org/10.1021/acsnano.1c04499

Singh S, Choudhury D, Yu F, et al., 2020, In situ bioprinting— Bioprinting from benchside to bedside? Acta Biomater, 101:14-25. https://doi.org/10.1016/j.actbio.2019.08.045

Kong L, Wu Z, Zhao H, et al., 2018, Bioactive injectable hydrogels containing desferrioxamine and bioglass for diabetic wound healing. ACS Appl Mater Interface, 10(36):30103–30114. https://doi.org/10.1021/acsami.8b09191

Albanna M, Binder KW, Murphy SV, et al., 2019, In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Sci Rep, 9:1856. https://doi.org/10.1038/s41598-018-38366-w

Hakimi N, Cheng R, Leng L, et al., 2018, Handheld skin printer: In situ formation of planar biomaterials and tissues. Lab Chip, 18(10):1440–1451. https://doi.org/10.1039/c7lc01236e

Nuutila K, Samandari M, Endo Y, et al., 2022, In vivo printing of growth factor-eluting adhesive scaffolds improves wound healing. Bioact Mater, 8:296–308. https://doi.org/10.1016/j.bioactmat.2021.06.030

Phan J, Kumar P, Hao D, et al., 2018, Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. J Extracell Vesicles, 7(1):1522236. https://doi.org/10.1080/20013078.2018.1522236

Hu Y, Tao R, Chen L, et al., 2021, Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis. J Nanobiotechnol, 19(1):150. https://doi.org/10.1186/s12951-021-00894-5

Hu Y, Wu B, Xiong Y, et al., 2021, Cryogenic 3D printed hydrogel scaffolds loading exosomes accelerate diabetic wound healing. Chem Eng J, 426:130634. https://doi.org/10.1016/j.cej.2021.130634

Thapa RK, Diep DB, Tonnesen HH, 2020, Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects. Acta Biomater, 103:52–67. https://doi.org/10.1016/j.actbio.2019.12.025

Chu B, He J-m, Wang Z, et al., 2021, Proangiogenic peptide nanofiber hydrogel/3D printed scaffold for dermal regeneration. Chem Eng J, 424:128146. https://doi.org/10.1016/j.cej.2020.128146

Yu Q, Han Y, Tian T, et al., 2019, Chinese sesame stick-inspired nano-fibrous scaffolds for tumor therapy and skin tissue reconstruction. Biomaterials, 194:25–35. https://doi.org/10.1016/j.biomaterials.2018.12.012

Yu Q, Han Y, Wang X, et al., 2018, Copper silicate hollow microspheres-incorporated scaffolds for chemo-photothermal therapy of melanoma and tissue healing. ACS Nano, 12(3):2695–2707. https://doi.org/10.1021/acsnano.7b08928

Wang X, Xue J, Ma B, et al., 2020, Black bioceramics: Combining regeneration with therapy. Adv Mater, 32(48):2005140. https://doi.org/10.1002/adma.202005140

Xu C, Xu Y, Yang M, et al., 2020, Black-phosphorus-incorporated hydrogel as a conductive and biodegradable platform for enhancement of the neural differentiation of mesenchymal stem cells. Adv Funct Mater, 30(39):2000177. https://doi.org/10.1002/adfm.202000177

Saghiri MA, Asatourian A, Orangi J, et al., 2015, Functional role of inorganic trace elements in angiogenesis-Part I: N, Fe, Se, P, Au, and Ca. Crit Rev Oncol Hematol, 96(1): 129–142. https://dx.doi.org/10.1016/j.critrevonc.2015.05.010

Ma W, Ma H, Qiu P, et al., 2021, Sprayable beta-FeSi2 composite hydrogel for portable skin tumor treatment and wound healing. Biomaterials, 279:121225. https://doi.org/10.1016/j.biomaterials.2021.121225

Sheng L, Zhang Z, Zhang Y, et al., 2021, A novel “hot spring”- mimetic hydrogel with excellent angiogenic properties for chronic wound healing. Biomaterials, 264:120414. https://doi.org/10.1016/j.biomaterials.2020.120414

Ma J, Wu J, Zhang H, et al., 2022, 3D printing of diatomite incorporated composite scaffolds for skin repair of deep burn wounds. Int J Bioprint, 8(3):163–175. https://doi.org/10.18063/ijb.v8i3.580

Murphy SV, Atala A, 2014, 3D bioprinting of tissues and organs. Nat Biotech, 32(8):773–785. https://doi.org/10.1038/nbt.2958

Zhou F, Hong Y, Liang R, et al., 2020, Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials, 258:120287. 10.1016/j.biomaterials.2020.120287

Ma J, Qin C, Wu J, et al., 2021, 3D printing of strontium silicate microcylinder-containing multicellular biomaterial inks for vascularized skin regeneration. Adv Healthc Mater, 10(16):2100523. https://doi.org/10.1002/adhm.202100523

Wu J, Qin C, Ma J, et al., 2021, An immunomodulatory bioink with hollow manganese silicate nanospheres for angiogenesis. Appl Mater Today, 23:101015. https://doi.org/10.1016/j.apmt.2021.101015

Fan L, Xiao C, Guan P, et al., 2022, Extracellular matrix-based conductive interpenetrating network hydrogels with enhanced neurovascular regeneration properties for diabetic wounds repair. Adv Healthc Mater, 11(1):2101556. https://doi.org/10.1002/adhm.202101556

Wang J, Lin J, Chen L, et al., 2022, Endogenous electric-field-coupled electrospun short fiber via collecting wound exudation. Adv Mater, 34(9):2108325. https://doi.org/10.1002/adma.202108325

Sebastian A, Volk SW, Halai P, et al., 2017, Enhanced neurogenic biomarker expression and reinnervation in human acute skin wounds treated by electrical stimulation. J Investig Dermatol, 137(3):737–747. https://doi.org/10.1016/j.jid.2016.09.038

Emmerson E, 2017, Efficient healing takes some nerve: Electrical stimulation enhances innervation in cutaneous human wounds. J Investig Dermatol, 137(3):543–545. https://doi.org/10.1016/j.jid.2016.10.018

Tan M-h, Xu X-h, Yuan T-j, et al., 2022, Self-powered smart patch promotes skin nerve regeneration and sensation restoration by delivering biological-electrical signals in program. Biomaterials, 283:121413. https://doi.org/10.1016/j.biomaterials.2022.121413

Peng L-H, Xu X-H, Huang Y-F, et al., 2020, Self-adaptive all-in-one delivery chip for rapid skin nerves regeneration by endogenous mesenchymal stem cells. Adv Funct Mater, 30(40):2001751. https://doi.org/10.1002/adfm.202001751

Qian Z, Wang H, Bai Y, et al., 2020, Improving chronic diabetic wound healing through an injectable and self-healing hydrogel with platelet-rich plasma release. ACS Appl Mater Interface, 12(50):55659-55674. https://doi.org/10.1021/acsami.0c17142

Xu X-H, Yuan T-J, Dad HA, et al., 2021, Plant exosomes as novel nanoplatforms for microRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo. Nano Lett, 21(19):8151–8159. https://doi.org/10.1021/acs.nanolett.1c02530

Brokesh AM, Gaharwar AK, 2020, Inorganic biomaterials for regenerative medicine. ACS Appl Mater Interface, 12(5):5319–5344. https://doi.org/10.1021/acsami.9b17801

Sun L, Wang M, Chen S, et al., 2019, Molecularly engineered metal-based bioactive soft materials—Neuroactive magnesium ion/polymer hybrids. Acta Biomater, 85: 310–319. https://doi.org/10.1016/j.actbio.2018.12.040

Zhang H, Ma W, Ma H, et al., 2022, Spindle-like zinc silicate nanoparticles accelerating innervated and vascularized skin burn wound healing. Adv Healthc Mater, 11(10):2102359. https://doi.org/10.1002/adhm.202102359

Li T, Zhai D, Ma B, et al., 2019, 3D printing of hot dog-like biomaterials with hierarchical architecture and distinct bioactivity. Adv Sci, 6(19):1901146. https://doi.org/10.1002/advs.201901146

Li Y, Xu J, Mi J, et al., 2021, Biodegradable magnesium combined with distraction osteogenesis synergistically stimulates bone tissue regeneration via CGRP-FAK-VEGF signaling axis. Biomaterials, 275:120984. https://doi.org/10.1016/j.biomaterials.2021.120984

Li T, Chang J, Zhu Y, et al., 2020, 3D printing of bioinspired biomaterials for tissue regeneration. Adv Healthc Mater, 9(23):2000208. https://doi.org/10.1002/adhm.202000208

Zhang W, Feng C, Yang G, et al., 2017, 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials, 135:85–95. https://doi.org/10.1016/j.biomaterials.2017.05.005

Chung JJ, Yoo J, Sum BST, et al., 2021, 3D printed porous methacrylate/silica hybrid scaffold for bone substitution. Adv Healthc Mater, 10(12):2100117. https://doi.org/10.1002/adhm.202100117

Wang C, Lai J, Li K, et al., 2021, Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization. Bioact Mater, 6(1):137–145. https://doi.org/10.1016/j.bioactmat.2020.07.007

Byambaa B, Annabi N, Yue K, et al., 2017, Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthc Mater, 6(16):1700015. https://doi.org/10.1002/adhm.201700015

Piard C, Baker H, Kamalitdinov T, et al., 2019, Bioprinted osteon-like scaffolds enhance in vivo neovascularization. Biofabrication, 11(2):025013. https://doi.org/10.1088/1758-5090/ab078a

Sun X, Ma Z, Zhao X, et al., 2021, Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus. Bioact Mater, 6(3):757–769. https://doi.org/10.1016/j.bioactmat.2020.08.030

Wan Z, Zhang P, Liu Y, et al., 2020, Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomater, 101:26–42. https://doi.org/10.1016/j.actbio.2019.10.038

Feng C, Zhang W, Deng C, et al., 2017, 3D printing of lotus root-like biomimetic materials for cell delivery and tissue regeneration. Adv Sci, 4(12):1700401. https://doi.org/10.1002/advs.201700401

Hann SY, Cui H, Esworthy T, et al., 2021, Dual 3D printing for vascularized bone tissue regeneration. Acta Biomater, 123:263–274. https://doi.org/10.1016/j.actbio.2021.01.012

Wang X, Yu Y, Yang C, et al., 2021, Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration. Adv Funct Mater, 31(40):2105190. https://doi.org/10.1002/adfm.202105190

Zhang M, Lin R, Wang X, et al., 2020, 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. Sci Adv, 6(12):eaaz6725. https://doi.org/10.1126/sciadv.aaz6725

Wang L, Hu P, Jiang H, et al., 2022, Mild hyperthermia-mediated osteogenesis and angiogenesis play a critical role in magnetothermal composite-induced bone regeneration. Nano Today, 43:101401. https://doi.org/10.1016/j.nantod.2022.101401

Yu X, Wang X, Li D, et al., 2022, Mechanically reinforced injectable bioactive nanocomposite hydrogels for in-situ bone regeneration. Chem Eng J, 433:132799. https://doi.org/10.1016/j.cej.2021.132799

Zhu D, Lu B, Yang Q, et al., 2021, Lanthanum-doped mesoporous bioglasses/chitosan composite scaffolds enhance synchronous osteogenesis and angiogenesis for augmented osseous regeneration. Chem Eng J, 405:127077. https://doi.org/10.1016/j.cej.2020.127077

Yin J, Pan S, Guo X, et al., 2021, Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects. Nano-Micro Lett, 13(1): 30. https://doi.org/10.1007/s40820-020-00547-6

Han X, Sun M, Chen B, et al., 2021, Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioact Mater, 6(6):1639–1652. https://doi.org/10.1016/j.bioactmat.2020.11.019

Gu J, Zhang Q, Geng M, et al., 2021, Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue. Bioact Mater, 6(10):3254–3268. https://doi.org/10.1016/j.bioactmat.2021.02.033

Ha Y, Ma X, Li S, et al., 2022, Bone microenvironment-mimetic scaffolds with hierarchical microstructure for enhanced vascularization and bone regeneration. Adv Funct Mater, 32(20):2200011. https://doi.org/10.1002/adfm.202200011

Yang C, Zheng Z, Younis MR, et al., 2021, 3D printed enzyme-functionalized scaffold facilitates diabetic bone regeneration. Adv Funct Mater, 31(20):2101372. https://doi.org/10.1002/adfm.202101372

Li W, Miao W, Liu Y, et al., 2022, Bioprinted constructs that mimic the ossification center microenvironment for targeted innervation in bone regeneration. Adv Funct Mater, 32(9):2109871. https://doi.org/10.1002/adfm.202109871

Fitzpatrick V, Martin-Moldes Z, Deck A, et al., 2021, Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials, 276:120995. https://doi.org/10.1016/j.biomaterials.2021.120995

Zhang Y, Xu J, Ruan YC, et al., 2016, Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med, 22(10):1160–1169. https://doi.org/10.1038/nm.4162

Ma Y-X, Jiao K, Wan Q-Q, et al., 2022, Silicified collagen scaffold induces semaphorin 3A secretion by sensory nerves to improve in-situ bone regeneration. Bioact Mater, 9: 475–490. https://doi.org/10.1016/j.bioactmat.2021.07.016

Zhang M, Qin C, Wang Y, et al., 2022, 3D printing of tree-like scaffolds for innervated bone regeneration. Addit Manuf, 54:102721. https://doi.org/10.1016/j.addma.2022.102721

Zhang H, Qin C, Zhang M, et al., 2022, Calcium silicate nanowires-containing multicellular bioinks for 3D bioprinting of neural-bone constructs. Nano Today, 46:101584. https://doi.org/10.1016/j.nantod.2022.101584

Li T, Hou J, Wang L, et al., 2022, Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Acta Biomater, 156:21–36’. https://doi.org/10.1016/j.actbio.2022.08.037

Hwangbo H, Lee H, Jin E-J, et al., 2022, Bio-printing of aligned GelMa-based cell-laden structure for muscle tissue regeneration. Bioact Mater, 8:57–70. https://doi.org/10.1016/j.bioactmat.2021.06.031

Kim W, Lee H, Lee C K, et al., 2021, A bioprinting process supplemented with in situ electrical stimulation directly induces significant myotube formation and myogenesis. Adv Funct Mater, 31(51):2105170. https://doi.org/10.1002/adfm.202105170

Panayi AC, Smit L, Hays N, et al., 2020, A porous collagen-GAG scaffold promotes muscle regeneration following volumetric muscle loss injury. Wound Repair Regen, 28(1):61–74. https://doi.org/10.1111/wrr.12768

Zhang Z, Klausen LH, Chen M, et al., 2018, Electroactive scaffolds for neurogenesis and myogenesis: graphene-based nanomaterials. Small, 14(48):1801983. https://doi.org/10.1002/smll.201801983

Quint JP, Mostafavi A, Endo Y, et al., 2021, In vivo printing of nanoenabled scaffolds for the treatment of skeletal muscle injuries. Adv Healthc Mater, 10(10):2002152. https://doi.org/10.1002/adhm.202002152

Said SS, Yin H, Elfarnawany M, et al., 2019, Fortifying angiogenesis in ischemic muscle with FGF9-loaded electrospun poly(ester amide) fibers. Adv Healthc Mater, 8(8):1801294. https://doi.org/10.1002/adhm.201801294

Gholobova D, Terrie L, Gerard M, et al., 2020, Vascularization of tissue-engineered skeletal muscle constructs. Biomaterials, 235:119708. https://doi.org/10.1016/j.biomaterials.2019.119708

Choi Y-J, Jun Y-J, Kim D Y, et al., 2019, A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss. Biomaterials, 206: 160–169. https://doi.org/10.1016/j.biomaterials.2019.03.036

Qazi TH, Mooney DJ, Pumberger M, et al., 2015, Biomaterials based strategies for skeletal muscle tissue engineering: Existing technologies and future trends. Biomaterials, 53:502–521. https://doi.org/10.1016/j.biomaterials.2015.02.110

Lee H, Kim W, Lee J, et al., 2021, Self-aligned myofibers in 3D bioprinted extracellular matrix-based construct accelerate skeletal muscle function restoration. Appl Phys Rev, 8(2):021405. https://doi.org/10.1063/5.0039639

Ostrovidov S, Salehi S, Costantini M, et al., 2019, 3D bioprinting in skeletal muscle tissue engineering. Small, 15(24):1805530. https://doi.org/10.1002/smll.201805530

Gao G, Cui X, 2016, Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotech Lett, 38(2):203–211. https://doi.org/10.1007/s10529-015-1975-1

Kim JH, Kim I, Seol Y-J, et al., 2020, Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat Commun, 11(1):1025. https://doi.org/10.1038/s41467-020-14930-9

Mi J, Xu J-K, Yao Z, et al., 2022, Implantable electrical stimulation at dorsal root ganglions accelerates osteoporotic fracture healing via calcitonin gene-related peptide. Adv Sci, 9(1):2103005. https://doi.org/10.1002/advs.202103005

DOI: http://dx.doi.org/10.18063/ijb.706


  • There are currently no refbacks.

Copyright (c) 2023 Author(s).

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.