Fast Customization of Hollow Microneedle Patches for Insulin Delivery
Vol 8, Issue 2, 2022, Article identifier:
VIEWS - 341 (Abstract) 115 (PDF) 26 (Supp. File (Video 1))
Abstract
Keywords
References
Gao B, Guo M, Lyu K, et al., 2021, Intelligent Silk Fibroin Based Microneedle Dressing (i-SMD). Adv Funct Mater, 31:2006839. http://doi.org/10.1002/adfm.202006839
Li X, Huang X, Mo J, et al., 2021, A Fully Integrated Closed-Loop System Based on Mesoporous Microneedles-Iontophoresis for Diabetes Treatment. Adv Sci (Weinh), 8:e2100827. http://doi.org/10.1002/advs.202100827
Yao S, Wang Y, Chi J, et al., 2021, Porous MOF Microneedle Array Patch with Photothermal Responsive Nitric Oxide Delivery for Wound Healing. Adv Sci (Weinh), 9:e2103449. http://doi.org/10.1002/advs.202103449
Sadeqi A, Kiaee G, Zeng W, et al., 2022, Hard Polymeric Porous Microneedles on Stretchable Substrate for Transdermal Drug Delivery. Sci Rep, 12:1853. http://doi.org/10.1038/s41598-022-05912-6
Economidou SN, Uddin MJ, Marques MJ, et al., 2021, A Novel 3D Printed Hollow Microneedle Microelectromechanical System for Controlled, Personalized Transdermal Drug Delivery. Addit Manuf, 38:101815. http://doi.org/10.1016/j.addma.2020.101815
Mishra R, Maiti TK, Bhattacharyya TK, 2019, Feasibility Studies on Nafion Membrane Actuated Micropump Integrated With Hollow Microneedles for Insulin Delivery Device. J Microelectromech Syst, 28:987–96. http://doi.org/10.1109/Jmems.2019.2939189
Niu L, Chu LY, Burton SA, et al., 2019, Intradermal Delivery of Vaccine Nanoparticles Using Hollow Microneedle Array Generates Enhanced and Balanced Immune Response. J. Control Release, 294:268–78. http://doi.org/10.1016/j.jconrel.2018.12.026
van der Maaden K, Heuts J, Camps M, et al., 2018, Hollow Microneedle-mediated Micro-injections of a Liposomal HPV E743-63 Synthetic Long Peptide Vaccine for Efficient Induction of Cytotoxic and T-helper Responses. J Control Release, 269:347–54. http://doi.org/10.1016/j.jconrel.2017.11.035
Gupta J, Denson DD, Felner EI, et al., 2012, Rapid Local Anesthesia in Humans Using Minimally Invasive Microneedles. Clin J Pain, 28:129–35. http://doi.org/10.1097/AJP.0b013e318225dbe9
Dardano P, De Martino S, Battisti M, et al., 2021, One-Shot Fabrication of Polymeric Hollow Microneedles by Standard Photolithography. Polymers (Basel), 13:520. http://doi.org/10.3390/polym13040520
Wang PC, Wester BA, Rajaraman S, et al., 2009, Hollow Polymer Microneedle Array Fabricated by Photolithography Process Combined with Micromolding Technique. Annu Int Conf IEEE Eng Med Biol Soc, 2009:7026–9. http://doi.org/10.1109/IEMBS.2009.5333317
Bolton CJ, Howells O, Blayney GJ, et al., 2020, Hollow Silicon Microneedle Fabrication Using Advanced Plasma Etch Technologies for Applications in Transdermal Drug Delivery. Lab Chip, 20:2788–95. http://doi.org/10.1039/d0lc00567c
Li Y, Zhang H, Yang R, et al., 2019, Fabrication of Sharp Silicon Hollow Microneedles by Deep-reactive Ion Etching Towards Minimally Invasive Diagnostics. Microsyst Nanoeng, 5:41. http://doi.org/10.1038/s41378-019-0077-y
Trautmann A, Roth GL, Nujiqi B, et al., 2019, Towards a Versatile Point-of-care System Combining Femto second Laser Generated Microfluidic Channels and Direct Laser Written Microneedle Arrays. Microsyst Nanoeng, 5:6. http://doi.org/10.1038/s41378-019-0046-5
Carcamo-Martinez A, Mallon B, Dominguez-Robles J, et al., 2021, Hollow Microneedles: A Perspective in Biomedical Applications. Int J Pharm, 599:120455. http://doi.org/10.1016/j.ijpharm.2021.120455
Xenikakis I, Tsongas K, Tzimtzimis EK, et al., 2021, Fabrication of Hollow Microneedles Using Liquid Crystal Display (LCD) Vat Polymerization 3D Printing Technology for Transdermal Macromolecular Delivery. Int J Pharm, 597:120303. http://doi.org/10.1016/j.ijpharm.2021.120303
Yeung C, Chen S, King B, et al., 2019, A 3D-Printed Microfluidic-enabled Hollow Microneedle Architecture for Transdermal Drug Delivery. Biomicrofluidics, 13:064125. http://doi.org/10.1063/1.5127778
Ovsianikov BC, Mente P, Monteiro-Riviere NA, et al., 2007, Two Photon Polymerization of Polymer–Ceramic Hybrid Materials for Transdermal Drug Delivery. Int J Appl Ceram Technol, 4:22–9. http://doi.org/10.1111/j.1744-7402.2007.02115.x
Mathew E, Pitzanti G, Dos Santos AL, et al., 2021, Optimization of Printing Parameters for Digital Light Processing 3D Printing of Hollow Microneedle Arrays. Pharmaceutics, 13:1837. http://doi.org/10.3390/pharmaceutics13111837
Liao C, Anderson W, Antaw F, et al., 2019, Two-Photon Nanolithography of Tailored Hollow three-dimensional Microdevices for Biosystems. ACS Omega, 4:1401–9. http://doi.org/10.1021/acsomega.8b03164
Doraiswamy A, Ovsianikov A, Gittard SD, et al., 2010, Fabrication of Microneedles Using Two Photon Polymerization for Transdermal Delivery of Nanomaterials. J Nanosci Nanotechnol, 10:6305–12. http://doi.org/10.1166/jnn.2010.2636
Liu X, Li R, Yuan X, et al., 2021, Fast Customization of Microneedle Arrays by Static Optical Projection Lithography. ACS Appl Mater Interfaces, 13:60522–30. http://doi.org/10.1021/acsami.1c21489
Tan JY, Kim A, Kim JJ, 2021, Modeling, Characterization, and Fabrication of Bell-tip Microneedle Array by Diffraction and Self-aligned Lens Effects. Appl Phys Lett, 119:023501. http://doi.org/10.1063/5.0055073
Yang C, Yu Y, Wang X, et al., 2021, Cellular Fluidic-based Vascular Networks for Tissue Engineering. Eng Regen, 2:171–4. http://doi.org/10.1016/j.engreg.2021.09.006
Use of International Standard ISO-10993-1, 2020, Biological Evaluation of Medical Devices Part 1: Evaluation and Testing within a Risk Management Process. In: US Department of Health and Human Services FDA, Center for Devices and Radiological Health, Center for Biologics Evaluation and Research.
Lim SH, Tiew WJ, Zhang J, et al., 2020, Geometrical Optimisation of a Personalised Microneedle Eye Patch for Transdermal Delivery of Anti-wrinkle Small Peptide. Biofabrication, 12:035003. http://doi.org/10.1088/1758-5090/ab6d37
Zhang D, Das DB, Rielly CD, 2014, Microneedle Assisted Micro-Particle Delivery from Gene Guns: Experiments Using Skin-Mimicking Agarose Gel. J Pharm Sci, 103:613–27. http://doi.org/10.1002/jps.23835
Wang J, Yu J, Zhang Y, et al., 2019, Charge-switchable Polymeric Complex for Glucose-responsive Insulin Delivery in Mice and Pigs. Sci Adv, 5:eaaw4357. http://doi.org/10.1126/sciadv.aaw4357
Zhou C, Tang H, Zhang L, et al., 2021, Hollow Microneedle Arrays Produced by Low‐Cost, High‐Fidelity Replication of Hypodermic Needle Tips for High‐Dose Transdermal Drug Delivery. Adv Eng Mater, 23:2001355. http://doi.org/10.1002/adem.202001355
Oskui SM, Diamante G, Liao C, et al., 2016, Assessing and Reducing the Toxicity of 3D-Printed Parts. Environ Sci Technol Lett, 3:1–6. http://doi.org/10.1021/acs.estlett.5b00249
Davis SP, Landis BJ, Adams ZH, et al., 2004, Insertion of Microneedles into Skin: Measurement and Prediction of Insertion Force and Needle Fracture Force. J Biomech, 37:1155–63. http://doi.org/10.1016/j.jbiomech.2003.12.010
Roxhed N, Samel B, Nordquist L, et al., 2008, Painless Drug Delivery through Microneedle-based Transdermal Patches Featuring Active Infusion. IEEE Trans Biomed Eng, 55:1063–71. http://doi.org/10.1109/TBME.2007.906492
Burton SA, Ng CY, Simmers R, et al., 2011, Rapid Intradermal Delivery of Liquid Formulations Using a Hollow Microstructured Array. Pharm Res, 28:31–40. http://doi.org/10.1007/s11095-010-0177-8
Ma Y, Li CG, Kim S, et al., 2018, An Insulin Microneedle Pen (IMP) for Self-Subcutaneous Insulin Injection. Adv Mater Technol, 3:1800234. http://doi.org/10.1002/admt.201800234
Jung YS, Koo DH, Yang JY, et al., 2018, Peri-tumor Administration of 5-fluorouracil Sol-gel Using a Hollow Microneedle for Treatment of Gastric Cancer. Drug Deliv, 25:872–9. http://doi.org/10.1080/10717544.2018.1455760
Dul M, Stefanidou M, Porta P, et al., 2017, Hydrodynamic Gene Delivery in Human Skin Using a Hollow Microneedle Device. J Control Release, 265:120–31. http://doi.org/10.1016/j.jconrel.2017.02.028
Norman JJ, Brown MR, Raviele NA, et al., 2013, Faster Pharmacokinetics and Increased Patient Acceptance of Intradermal Insulin Delivery Using a Single Hollow Microneedle in Children and Adolescents with Type 1 Diabetes. Pediatr Diabetes, 14:459–65. http://doi.org/10.1111/pedi.12031
Ogai N, Nonaka I, Toda Y, et al., 2018, Enhanced Immunity in Intradermal Vaccination by Novel Hollow Microneedles. Skin Res Technol, 24:630–5. http://doi.org/10.1111/srt.12576
Chen G, Chen Z, Wen D, et al., 2020, Transdermal Cold Atmospheric Plasma-mediated Immune Checkpoint Blockade Therapy. Proc Natl Acad Sci U S A, 117:3687–92. http://doi.org/10.1073/pnas.1917891117
Jun H, Han MR, Kang NG, et al., 2015, Use of Hollow Microneedles for Targeted Delivery of Phenylephrine to Treat Fecal Incontinence. J Control Release, 207:1–6. http://doi.org/10.1016/j.jconrel.2015.03.031
Szeto B, Aksit A, Valentini C, et al., 2020, Novel 3D-printed Hollow Microneedles Facilitate Safe, Reliable, and Informative Sampling of Perilymph from Guinea Pigs. Hear Res, 400:108141. http://doi.org/10.1016/j.heares.2020.108141
DOI: http://dx.doi.org/10.18063/ijb.v8i2.553
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Author(s).
License URL: https://creativecommons.org/licenses/by/4.0/