Hybrid polycaprolactone/hydrogel scaffold fabrication and in-process plasma treatment using PABS
Vol 5, Issue 1, 2019, Article identifier:174
VIEWS - 906 (Abstract) 526 (PDF)
Abstract
Keywords
Full Text:
Download PDFReferences
Pereira R F, Sousa A, Barrias C C, et al., 2017, Advances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanuf Rev, 2(1): 1. https://doi.org/10.1007/s40898-017- 0003-8.
Melchels F P, Domingos M A, Klein T J, et al., 2012, Additive manufacturing of tissues and organs. Prog Polym Sci, 37(8): 1079-1104. https://doi.org/10.1016/j. progpolymsci.2011.11.007.
Vyas C, Pereira R, Huang B, et al., 2017, Engineering the vasculature with additive manufacturing. Curr Opin Biomed Eng, 2: 1-13. https://doi.org/10.1016/j.cobme.2017.05.008.
Rahman S, Carter P, Bhattarai N, 2017, Aloe vera for tissue engineering applications. J Funct Biomater, 8(1): 6. https:// doi.org/10.3390/jfb8010006.
Maldonado M A, Bonham A J, 2017, Conductive gel polymers as an extracellular matrix mimic and cell vehicle for cardiac tissue engineering. FASEB J, 31(1_supplement): 925.921-925.921.
Black C R, Goriainov V, Gibbs D, et al., 2015, Bone tissue engineering. Curr Mol Biol Rep, 1(3): 132-140. https://doi. org/10.1007/s40610-015-0022-2.
Asghari F, Samiei M, Adibkia K, et al., 2017, Biodegradable and biocompatible polymers for tissue engineering application: A review. Artif Cells Nanomed Biotechnol, 45(2): 185-192. https://doi.org/10.3109/21691401.2016.1146731.
Trombetta R, Inzana J A, Schwarz E M, et al., 2017, 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng, 45(1): 23-44. https://doi. org/10.1007/s10439-016-1678-3.
Vacanti J P, Langer R, 1999, Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet, 354: S32-S34. https://doi.org/10.1016/S0140-6736(99)90247-7.
Mohanty A K, Misra M, Hinrichsen G, 2000, Biofibres, biodegradable polymers and biocomposites: An overview. Macromol Mater Eng, 276(1): 1-24. https://doi. org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W.
Kumar A, Mandal S, Barui S, et al., 2016, Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Mater Sci Eng Rep, 103: 1-39. https://doi.org/10.1016/j.mser.2016.01.001.
Forrestal D P, Klein T J, Woodruff M A, 2017, Challenges in engineering large customized bone constructs. Biotechnol Bioeng, 114(6): 1129-1139. https://doi.org/10.1002/bit.26222.
Bártolo P, Chua C, Almeida H, et al., 2009, Biomanufacturing for tissue engineering: Present and future trends. Virtual Phys Prototyp, 4(4): 203-216. https://doi. org/10.1080/17452750903476288.
Bártolo P J, Domingos M, Patrício T, et al., 2011, Biofabrication strategies for tissue engineering. Adv Model Tissue Eng, 11: 137-176. https://doi.org/10.1007/978-94- 007-1254-6_8.
Bartolo P, Kruth J P, Silva J, et al., 2012, Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann Manuf Technol, 61(2): 635-655. https:// doi.org/10.1016/j.cirp.2012.05.005.
Rutz A L, Hyland K E, Jakus A E, et al., 2015, A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater, 27(9): 1607-1614. https://doi. org/10.1002/adma.201405076.
Jakus A E, Shah R N, 2017, Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. J Biomed Mater Res Part A, 105(1): 274-283. https://doi.org/10.1002/jbm.a.35684.
Hoque M E, Chuan Y L, Pashby I, 2012, Extrusion based rapid prototyping technique: An advanced platform for tissue engineering scaffold fabrication. Biopolymers, 97(2): 83-93.
Bellini A, 2002, Fused Deposition of Ceramics: A Comprehensive Experimental, Analytical and Computational Study of Material Behavior, Fabrication Process and equipment Desig. Philadelphia, PA: Drexel Universityn.
Almeida H, Bartolo P, Mota C, et al., 2010, Process equipment for rapid bioextrusion fabrication. Portuguese Patent Appl, 104, 247.
Zhang L G, Fisher J P, Leong K, 2015, 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine. London: Academic Press.
Giannitelli S, Mozetic P, Trombetta M, et al., 2015, Combined additive manufacturing approaches in tissue engineering. Acta Biomater, 24: 1-11. https://doi.org/10.1016/j. actbio.2015.06.032.
Sobral J M, Caridade S G, Sousa R A, et al., 2011, Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater, 7(3): 1009-1018. https://doi.org/10.1016/j.actbio.2010.11.003.
Oh S H, Lee J H, 2013, Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility. Biomed Mater, 8(1): 014101. https://doi. org/10.1088/1748-6041/8/1/014101.
Yang J, Wan Y, Yang J, et al., 2003, Plasma-treated, collagen-anchored polylactone: Its cell affinity evaluation under shear or shear-free conditions. J Biomed Mater Res Part A, 67(4): 1139-1147. https://doi.org/10.1002/jbm.a.10034.
Ozbolat I T, Chen H, Yu Y, 2014, Development of ‘multi-arm bioprinter’for hybrid biofabrication of tissue engineering constructs. Robot Comput Integr Manuf, 30(3): 295-304. https://doi.org/10.1016/j.rcim.2013.10.005.
Intranuovo F, Gristina R, Brun F, et al., 2014, Plasma modification of PCL porous scaffolds fabricated by solvent-casting/particulate-leaching for tissue engineering. Plasma Process Polym, 11(2): 184-195. https://doi.org/10.1002/ ppap.201300149.
Intranuovo F, Gristina R, Fracassi L, et al., 2016, Plasma processing of scaffolds for tissue engineering and regenerative medicine. Plasma Chem Plasma Process, 36(1): 269-280. https://doi.org/10.1007/s11090-015-9667-0.
Jeon O, Bouhadir K H, Mansour J M, et al., 2009, Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials, 30(14): 2724- 2734. https://doi.org/10.1016/j.biomaterials.2009.01.034.
Liu F, Hinduja S, Bartolo P, 2018, User interface tool for a novel plasma-assisted bio-additive extrusion system. Rapid Prototyp, 10: 1108.https://doi.org/10.1108/RPJ-07-2016-0115.
Park K, Ju Y M, Son J S, et al., 2007, Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. J Biomater Sci Polym , 18(4): 369-382. https://doi.org/10.1163/156856207780424997.
Thakur S, Neogi S, 2015, Tailoring the adhesion of polymers using plasma for biomedical applications: A critical review. Rev Adhes Adhes, 3(1): 53-97. https://doi.org/10.7569/ RAA.2015.097303.
Gross M, Zhao X, Mascarenhas V, et al., 2016, Effects of the surface physico-chemical properties and the surface textures on the initial colonization and the attached growth in algal biofilm. Biotechnol Biofuel, 9(1): 38. https://doi.org/10.1186/ s13068-016-0451-z.
Hashimoto M, Hossain S, Masumura S, 1999, Effect of aging on plasma membrane fluidity of rat aortic endothelial cells-.☆ Exp Gerontol, 34(5): 687-698. https://doi.org/10.1016/ S0531-5565(99)00025-X.
Wavhal D S, Fisher E R, 2002, Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization. J Membr Sci, 209(1): 255-269. https://doi.org/10.1016/S0376-7388(02)00352-6.
Pappa A M, Karagkiozaki V, Krol S, et al., 2015, Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants. Beilstein J Nanotechnol, 6: 254. https://doi.org/10.3762/bjnano.6.24.
Sousa I, Mendes A, Pereira R F, et al., 2014, Collagen surface modified poly (ε-caprolactone) scaffolds with improved hydrophilicity and cell adhesion properties. Mater Lett, 134: 263-267. https://doi.org/10.1016/j.matlet.2014.06.132.
DOI: http://dx.doi.org/10.18063/ijb.v5i1.174
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Liu, et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.