Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization
Vol 4, Issue 2, 2018, Article identifier:144
VIEWS - 7522 (Abstract) 949 (PDF)
Abstract
Keywords
Full Text:
Download PDFReferences
Lee J S, Romero R, Han Y M, et al., 2015, Placenta-ona-chip: A novel platform to study the biology of the human placenta. J Matern Neonatal Med, 29(7): 1046–1054. http://dx.doi.org/10.3109/14767058.2015.1038518
Ren K, Zhou J, Wu H, 2013, Materials for microfluidic chip fabrication. Acc Chem Res, 46(11): 2396–2406. http://dx.doi.org/10.1021/ar300314s
Blundell C, Tess E R, Schanzer A S R, et al., 2016, A microphysiological model of the human placental barrier. Lab Chip, 16(16): 3065–3073. http://dx.doi.org/10.1039/c6lc00259e
Sakolish C M, Esch M B, Hickman J J, et al., 2016, Modeling barrier tissues in vitro: Methods, achievements, and challenges. EBioMedicine, 5(C): 30–39. http://dx.doi.org/10.1016/j.ebiom.2016.02.023
Djagny K B, Wang Z, Xu S, et al., 2001, Gelatin: A valuable protein for food and pharmaceutical industries. Crit Rev Food Sci Nutr, 41(6): 481–492. http://dx.doi.org/10.1080/20014091091904
Peinemann K V, Nunes S P, 2007, Application of membranes in tissue engineering and biohybrid organ technology. Membrane technology: Membranes for life sciences, 1st edition, pp. 343, 2007. http://dx.doi.org/10.1002/9783527631360.ch8
Van Den Bulcke A I, Bogdanov B, De Rooze N, et al., 2000, Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 1(1): 31–38. http://dx.doi.org/10.1021/bm990017d
Ovsianikov A, Mironov V, Stampfl J, et al., 2012, Engineering 3D cell-culture matrices: Multiphoton processing technologies for biological & tissue engineering applications. Expert Rev Med Devices, 9(6): 613–633. http://dx.doi.org/10.1586/erd.12.48
Hölzl K, Lin S, Tytgat L, et al, 2016, Bioink properties before, during and after 3D bioprinting. Biofabrication, 8(3): 032002. http://dx.doi.org/10.1088/1758-5090/8/3/032002
Van Hoorick J, Gruber P, Markovic M, et al., 2017, Cross-linkable gelatins with superior mechanical properties through carboxylic acid modification: Increasing the two-photon polymerization potential. Biomacromolecules, 18(10): 3260–3272. http://dx.doi.org/10.1021/acs.biomac.7b00905
Tayalia P, Mendonca C R, Baldacchini T, et al., 2008, 3D cell-migration studies using two-photon engineered polymer scaffolds. Adv Mater, 20(23): 4494–4498. http://dx.doi.org/10.1002/adma.200801319
Paz V F, Emons M, Obata K, et al., 2012, Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization. J Laser Appl, 24(4): 293–301. http://dx.doi.org/10.2351/1.4712151
Stampfl J, Liska R, Ovsinikov A, 2016, Multiphoton lithography: Techniques, materials, and applications. in Stampfl J, Liska R, Ovsinikov A, (Eds.) John Wiley & Sons, ISBN: 978-3-527-33717-0
Markovic M, Van Hoorick J, Hölzl K, et al., 2015, Hybrid tissue engineering scaffolds by combination of three-dimensional printing and cell photoencapsulation. J Nanotechnol Eng Med, 6(2): 0210011–210017. http://dx.doi.org/10.1115/1.4031466
Ovsianikov A, Muehleder S, Torgersen T, et al., 2014, Laser photofabrication of cell-containing hydrogel constructs. Langmuir, 30(13): 3787–3794. http://dx.doi.org/10.1021/la402346z
Faller A, Schünke M, Schünke G, et al., 2012, Fortpflanzung, Entwikclung und Geburt [in German]. Reproduction, development and birth. in Der Körper des Menschen, Stuttgart: Georg Thieme Verlag, 16th edition, pp. 752ff, 2012.
Desoye G, Gauster M, Wadsack C, et al., 2011, Placental transport in pregnancy pathologies. Am J Clin Nutr, 94(6): 1896–1902. http://dx.doi.org/10.3945/ajcn.110.000851
Gallo L A, Barrett H L, Dekker N M, 2016, Review: Placental transport and metabolism of energy substrates in maternal obesity and diabetes. Placenta, 54: 59–67. http://dx.doi.org/10.1016/j.placenta.2016.12.006
Gaccioli F, Lager S, Powell T L, et al., 2012, Placental transport in response to altered maternal nutrition. J Dev Orig Health Dis, 4(2): 1–15. http://dx.doi.org/10.1017/S2040174412000529
Gaither K, Quraishi A N, Illsley N P, 2016, Diabetes alters the expression and activity of the human placental GLUT1 glucose transporter. J Clin Endocrinol Metab, 84(2): 695–701. http://dx.doi.org/10.1210/jcem.84.2.5438
Jansson T, Ekstrand Y, Wennergren M, et al., 2001, Placental glucose transport in gestational diabetes mellitus. Am J Obstet Gynecol, 184(2): 111–116. http://dx.doi.org/10.1067/mob.2001.108075
Miura S, Sato K, Kato-Negishi M, et al., 2015, Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat Commun, 6(12): 8871. http://dx.doi.org/10.1038/ncomms9871
Caplin J D, 2016, Utilizing microfluidic technology to replicate placental functions in a drug testing model. 2016. Global Congress on NanoEngineering for Medicine and Biology.
Chen S, Zhang Q, Nakamoto T, et al., 2016, Gelatin scaffolds with controlled pore structure and mechanical property for cartilage tissue engineering. Tissue Eng Part C Methods, 22(3): 189–198.
Gorgieva S, Kokol V, 2011, Biomaterials and their biocompatibility: Review and perspectives. InTech, 1–36.
Markovic M, Van Hoorick J, Hölzl K, et al., 2015, Hybrid tissue engineering scaffolds by combination of three-dimensional printing and cell photoencapsulation. J Nanotechnol Eng Med, 6(2): 1–7. http://dx.doi.org/10.1115/1.4031466
Van Hoorick J, Gruber P, Markovic M, et al., 2018, Highly reactive thiol-norbornene photo-click hydrogels: Toward improved processability. Macromolecular Rapid Commun: 1800181, http://dx.doi.org/10.1002/marc.201800181
Nichol J W, Koshy S T, Bae H, et al., 2010, Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 31(21): 5536–5544. http://dx.doi.org/10.1016/j.biomaterials.2010.03.064
Maquoi E, Noel A, Foidart J M, 1997, Matrix metalloproteinases in choriocarcinoma cell lines: A potential regulatory role of extracellular matrix components. in Placental Molecules in Hemodynamics, Transport, and Cellular Regulation, T. Hata, M. Takayama, I. Taki, and J.-M. Foidart, pp. 585, 1997.
Ruoslahti E, Pierschbacher M D, 1897, New perspectives in cell adhesion: RGD and integrins. Am Assoc Adv Sci, 238(4826): 491–497. http://dx.doi.org/10.1126/science.2821619
PeproTech, 2014, Endothelial cell media-maintenance media for endothelial cells.
Seeger J M, Klingman N, et al., 1985, Improved endothelial cell seeding with cultured cells and fibronectin-coated grafts. J Surg Res, 38(6): 641–647.
Ruoslahti E, 1984, Fibronectin in cell adhesion and invasion. Cancer Metastasis Rev, 3(1): 43–51.
Wang Q, 2017, Fabrication of photo-mediated biomaterial scaffolds. in Smart Materials for Tissue Engineering: Fundamental Principles, Q. Wang, Ed. 2017.
Ren K, Zhou J, Wu H, 2013, Materials for microfluidic chip fabrication. Acc Chem Res, 46(11): 2396–2406. https://dx.doi.org/10.1021/ar300314s
Dendukuri D, Panda P, Haghgooie R, et al., 2008, Modeling of oxygen-inhibited free radical photopolymerization in a PDMS microfluidic device. Macromolecules, 41(22): 8547–8556.
Altannavch T S, Roubalová K, Era P K U Č, 2004, Effect of high glucose concentrations on expression of ELAM-1, VCAM-1 and ICAM-1 in HUVEC with and without cytokine activation. Physiol Res, 53: 77–82. Avaliable from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.655.1274&rep=rep1&type=pdf
DOI: http://dx.doi.org/10.18063/ijb.v4i2.144
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Denise Mandt, Peter Gruber, Marica Markovic, Maximillian Tromayer, Mario Rothbauer, Sebastian Rudi Adam Krayz, Faheem Ali, Jasper van Hoorick, Wolfgang Holnthoner, Severin Muhleder, Peter Dubruel, Sandra van Vlierberghe, Peter Ertl, Robert Liska, Aleksandr Ovsianikov

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.