Novel Ultrashort Self-Assembling Peptide Bioinks for 3D Culture of Muscle Myoblast Cells
Vol 4, Issue 2, 2018, Article identifier:129
VIEWS - 3141 (Abstract) 643 (PDF)
Abstract
Keywords
Full Text:
Download PDFReferences
Stilhano R S, Madrigal J L, Wong K, et al., 2016, Injectable alginate hydrogel for enhanced spatiotemporal control of lentivector delivery in murine skeletal muscle. J Control Release, 237: 42–49. http://dx.doi.org/10.1016/j.jconrel.2016.06.047
Chaturvedi V, Dye D E, Kinnear B F, et al., 2015, Interactions between skeletal muscle myoblasts and their extracellular matrix revealed by a serum free culture system. PLO S, 10(6): 1–27. https://dx.doi.org/10.1371/journal.pone.0127675
Järvinen T A H, Järvinen T L N, Kääriäinen M, et al., 2007, Muscle injuries: Optimising recovery. Best Pract Res Clin Rheumatol, 2(2): 317–331. http://dx.doi.org/10.1016/berh.2006.12.004
Manring H, Abreu E, Brotto N, et al., 2014, Novel excitation-contraction coupling related genes reveal aspects of muscle weakness beyond atrophy: New hopes for treatment of musculoskeletal diseases. Front Physiol, 5: 1–12. http://dx.doi:10.3389/fphys.2014.00037
Grasman J M, Zayas M J, Page R L, et al., 2015, Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries. Acta Biomater, 25: 2–15. http://dx.doi.org/10.1016/j.actbio.2015.07.038
Zorlutuna P, Annabi N, Camci-Unal G, et al., 2012, Microfabricated biomaterials for engineering 3D tissues. Adv Mater, 24(14): 1782–1804. https://dx.doi:10.1002/adma.201104631
Sato M, Ito A, Kawabe Y, et al., 2011, Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells. J Biosci Bioeng, 112(3): 273–278. http://dx.doi.org/10.1016/j.jbiosc.2011.05.007
Lepper C, Partridge T A, Fan C M, 2011, An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development, 138(17): 3639–3646. http://dx.doi.org/10.1242/dev.067595
Kuraitis D, Giordano C, Ruel M, et al., 2012, Exploiting extracellular matrix-stem cell interactions: A review of natural materials for therapeutic muscle regeneration. Biomaterials, 33(2): 428–443. http://dx.doi.org/10.1016/j.biomaterials.2011.09.078
Atala A, Bauer S B, Soker S, et al., 2006, Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 367(9518): 1241–1246.http://dx.doi:10.1016/S0140-6736(06)68438-9
Carsin H, Ainaud P, Le Bever H, et al., 2000, Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: A five year single center experience with 30 patients. Burns, 26(4): 379–387. http://dx.doi.org/10.1016/S0305-4179(99)00143-6
Raya-Rivera A, Esquiliano D R, Yoo J J, et al., 2011, Tissue-engineered autologous urethras for patients who need reconstruction: An observational study. Lancet, 377(9772): 1175–1182.http://dx.doi.org/10.1016/S01406736(10)62354-9
Warnke P H, Springer I N, Wiltfang J, et al., 2004, Growth and transplantation of a custom vascularised bone graft in a man. Lancet, 364(9436): 766–770.http://dx.doi.org/10.1016/S01406736(04)16935-36
Atala A, Kasper F K, Mikos A G, 2012, Engineering complex tissues. Sci Transl Med, 4(160): 160 rv12. http://dx.doi.org/10.1126/scitranslmed.3004890
Murphy S V, Atala A, 2014, 3D bioprinting of tissues and organs. Nat Biotechnol, 32(8): 773–785. http://dx.doi.org/10.1038/nbt.2958
Derby B, 2012, Printing, and prototyping of tissues and scaffolds. Science, 338(6109): 921–926. http://dx.doi.org/10.1126/science.1226340
Sundaramurthi D, Rauf S, Hauser C A, 2016, 3D bioprinting technology for regenerative medicine applications. Int J Bioprint, 2(2): 117–135. http://dx.doi.org/10.18063/IJB.2016.02.010
Hauser C A, Zhang, 2010, Designer self-assembling peptide nanofiber biological materials, 2010, Chem Soc Rev, 39(8): 2780–2790. http://dx.doi.org/10.1039/B921448H
Loo Y, Zhang S, Hauser C A, 2012, From short peptides to nanofibers to macromolecular assemblies in biomedicine. Biotechnol Advs, 30(3): 593–603. http://dx.doi.org/10.1016/j.biotechadv.2011.10.004
Wu E C, Zhang S G, Hauser C A E, 2012, Self-assembling peptides as cell-interactive scaffolds. Adv Funct Mater, 22(3): 456–468. http://dx.doi.org/10.1002/adfm.201101905
Hauser C A, Deng R, Mishra A, et al., 2011, Natural tri- to hexapeptides self-assemble in water to amyloid β-type fiber aggregates by unexpected α-helical intermediate structures. Proceed Natl Acad Sci, 108(4): 1361–1366. http://dx.doi.org/10.1073/pnas.1014796108
Mishra A, Loo Y, Deng R, et al., 2011, Ultrasmall natural peptides self-assemble to strong temperature-resistant helical fibers in scaffolds suitable for tissue engineering. Nano Today, 6: 232–239. http://dx.doi.org/10.1016/j.nantod.2011.05.001
Reithofer M R, Chan K H, Lakshmanan A, et al., 2014, Ligation of anti-cancer drugs to selfassembling ultrashort peptides by click chemistry for localized therapy. Chem Sci, 5: 625–630. https://dx.doi.org/10.1039/c3sc51930a
Loo Y, Wong Y C, Cai E Z, et al., 2014, Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds. Biomaterials, 35(17): 4805–4814. http://dx.doi.org/10.1016/j.biomaterials.2014.02. 047
Kroehne V, Heschel I, Schügner F, et al., 2008, Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts. J Cell Mol Med, 12(5a): 1640–1648. http://dx.doi.org/10.1111/j.15824934.2008.00238.x
Kang H W, Lee S J, Ko I K, et al., 2016, A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol, 34(3): 312–319. http://dx.doi.org/10.1038/nbt.3413
Chen S, Nakamoto T, Kawazoe N, et al., 2015, Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds. Biomaterials, 73: 23–31. http://dx.doi.org/10.1016/j.biomaterials.2015.09.010
Jana S, Cooper A, Zhang M, 2013, Chitosan scaffolds with unidirectional microtubular pores for large skeletal myotube generation. Adv Healthc Mater, 2(4): 557–561. https://dx.doi.org/10.1002/adhm.201200177
Jana S, Levengood S K L, Zhang M, 2016, Anisotropic materials for skeletal-muscle-tissue engineering. Adv Mater, 28(48): 10588–10612. http://dx.doi.org/10.10 02/adma.201600240
Koning M, Harmsen M C, Van Luyn M J A, et al., 2009, Current opportunities and challenges in skeletal muscle tissue engineering. J Tissue Eng Regen Med, 3(6): 407–415. http://dx.doi.org/10.1002/term.190
Bian W, Bursac N, 2008, Tissue engineering of functional skeletal muscle: Challenges and recent advances. IEEE Eng Med Biol Mag, 27(5): 109–113. http://dx.doi.org/10.1109/MEMB.2008.928460
Pollot B E, Rathbone C R, Wenke J C, et al., 2017, Natural polymeric hydrogel evaluation for skeletal muscle tissue engineering. J Biomed Mater Res B Appl Biomater. http://dx.doi.org/10.1002/jbm.b.33859
Loo Y, Lakshmanan A, Ni M, et al., 2015, Peptide bioink: Self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures. Nano Lett, 15(10): 6919–6925. http://dx.doi.org/10.1021/acs.nanolett.5b02859
Taylor S E, Cao T, Talauliker P M, et al., 2013, Objective morphological quantification of microscopic images using a fast fourier transform (FFT) analysis. Curr Protoc Essent Lab Tech, 7(1):9.5.1–9.5.12. http://dx.doi.org/10.1002/9780470089941.et0905s07
Bajaj P, Reddy B Jr, Millet L, et al., 2011, Patterning the differentiation of C2C12 skeletal myoblasts. RSC, 3(9):897–909. http://dx.doi.org/10.1039/c1ib00058f
Matthew D S, Ronald T R, 2010, Collagen structure and stability. Annu Rev Biochem, 78: 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833
Shadrin I Y, Khodabukus A, Bursac N, 2016, Striated muscle function, regeneration, and repair cell. Mol Life Sci, 73(22): 4175–4202. http://dx.doi.org/10.1007/s00018-016-2285-z
Fuoco C, Petrilli L, Cannata S, et al., 2016, Matrix scaffolding for stem cell guidance toward skeletal muscle tissue engineering, J Orthop Surg Res, 11: 86. http://dx.doi.org/10.1186/s13018-016-0421-y
Fuoco C, Cannata S, Gargioli C, 2016, Could a functional artificial skeletal muscle be useful in muscle wasting? Curr Opin Clin Nutr Metab Care, 19(3): 182– 187. http://dx.doi.org/10.1097/MCO.0000000000000 271
Mironov V, Kasyanov V, Drake C, et al., 2008, Organ printing: Promises and challenges. Regen Med, 3(1): 93–103. http://dx.doi.org/10.2217/17460751.3.1.93
Choi Y J, Kim T G, Jeong J, et al., 2016, 3D cell printing of functional skeletal muscle constructs using skeletal muscle derived bioink. Adv Healthc Mater, 5(20): 2636–2645. http://dx.doi.org/10.1002/adhm. 201600483
Fedorovich N E, De Wijn J R, Verbout A J, et al., 2008, Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng Part A, 14(1): 127–133. http://dx.doi.org/10.1089/ten.a.2007.0158
Aviss K J, Gough J E, Downes S, 2010, Aligned electrospun polymer fibres for skeletal muscle regeneration. Eur Cell Mater, 19(1): 193–204. http://dx.doi.org/10.22203/eCM.v019a19
Macchiarini P, Jungebluth P, Go T, et al., 2008, Clinical transplantation of a tissue-engineered airway. Lancet, 372(9655): 2023–2030. http://dx.doi.org/10.1016/S01406736(08)61598-6
Martinello T, Bronzini I, Volpin A, et al., 2012, Successful recellularization of human tendon scaffolds using adipose-derived mesenchymal stem cells and collagen gel. J Tissue Eng Regen Med, 8(8): 612–619. http://dx.doi.org/10.1002/term.1557
Badylak S F, 2004, Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol, 12(3–4): 367–377. http://dx.doi.org/10.1016/j.trim.2003.12.016
Jia J, Richards D J, Pollard S, et al., 2014, Engineering alginate as bioink for bioprinting. Acta Biomater, 10(10): 4323–4331. http://dx.doi.org/10.1016/j.actbio.2014.06.034
Pataky K, Braschler T, Negro A, et al., 2012 Microdrop printing of hydrogel bioinks into 3D tissue like geometries. Adv Mater, 24(3): 391–396. http://dx.doi.org/10.1002/adma.201102800
Huijun L, Tan Y J, Leong K F, et al., 2017, 3D bioprinting of highly thixotropic alginate/methylcellulose hydrogel with strong interface bonding. ACS Appl Mater Interfaces, 9(23): 20086–20097. http://dx.doi.org/10.1002/10.1021/acsami.7b04216
Li H, Liu S, Li L, 2016, Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide. Int J Bioprint, 2(2): 54–66. http://dx.doi.org/10.18063/IJB.2016.02.007
Luo N C and Grover L M, 2010, Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett, 32(6): 733−742. http://dx.doi.org/10.1007/s10529-010-0221-0
Luo K, Yang Y, Shao Z, 2016, Physically crosslinked biocompatible silk-fibroin-based hydrogels with high mechanical performance. Adv Funct Mater, 26(6): 872−880. http://dx.doi.org/10.1002/adfm.201503450
Kuen Y L, David J M, 2012, Alginate: Properties and biomedical applications, Prog Polym Sci, 37(1): 106–126. http://dx.doi.org/10.1016/j.progpolymsci.2011. 06.003
Dreesmann L, Ahlers M, Schlosshauer B L, 2007, The pro-angiogenic characteristics of a cross-linked gelatin matrix. Biomaterials, 28(36): 5536–5543. http://dx.doi.org/10.1016/j.biomaterials.2007.0.040
Sandrasegaran K, Lall C, Rajesh A, et al., 2005, Distinguishing gelatin bioabsorbable sponge and postoperative abdominal abscess on. Am J Roentgenol, 184(2): 475–480. http://dx.doi.org/10.2214/ajr.184.2.01840475
Balakrishnan B, Mohanty M, Umashankar P R, et al., 2005, Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin, Biomaterials, 26(32), 6335–6342. http://dx.doi.org/10.1016/j.biomaterials.2005.04.012
Rosellini E, Cristallini C, Barbani N, et al., 2009, Preparation and characterization of alginate-gelatin blend films for cardiac tissue engineering. J Biomed Mater Res A, 91(2): 447–453. http://dx.doi.org/10.1002/jbm.a.32216
Dong Z, Wang Q, Du Y, 2006, Blend films and their properties for drug controlled release. J Memb Sci, 280(1–2): 37–44. http://dx.doi.org/10.1016/j.memsci. 2006.01.002
Fan L, Du L, Huang R, et al., 2005, Preparation and characterization of alginate-gelatin blend fibers. J Appl Polym Sci, 96(5):1625–1629. http://dx.doi.org/10.1002/app.21610
Li S, Yan Y, Xiong Z, et al., 2009, Gradient hydrogel construct based on an improved cell assembling system. J Bioact Compat Polym, 24(1): 84–99. http://dx.doi.org/10.1177/0883911509103357
Yan Y, Wang X, Xiong Z, 2005, Direct construction of a three-dimensional structure with cells and hydrogel. J Bioact Compat Polym, 20(3): 259–269. http://dx.doi.org/10.1177/08839115050536858
Li S, Yan Y, Xiong Z, et al., 2009, Gradient hydrogel construct based on an improved cell assembling system. J Bioact Compat Polym, 24(1): 84–99. http://dx.doi.org/10.1177/0883911509103357
Roberto D, Kenneth C H, 2011, Actin structure and function. Annu Rev Biophys, 40: 169–186. http://dx.doi. org/10.1146/annurev-biophys-042910-155359
Dado D, Levenberg S, 2009, Cell-scaffold mechanical interplay within engineered tissue. Semin Cell Dev Biol, 20(6): 656–664. http:// dx. doi. org/ 10. 1016/ j. semcdb. 2009.02.001
Phillips J, Bunting S, Hall S, et al., 2005, Neural tissue engineering: A self-organizing collagen guidance conduit. Tissue Eng, 11(9–10): 1611–1617. http://dx.doi.org/10. 1089/ten.2005.11.1611
Chung C, Bien H, Entcheva E, 2007, The role of cardiac tissue alignment in modulating electrical function. J Cardiovasc Electrophysiol, 18(12): 1323– 1329. http://dx.doi.org/10.1111 /j. 15408167. 2007. 009 59.x
Zhao Y, Zeng H, Nam J, et al., 2009, Fabrication of skeletal muscle constructs by topographic activation of cell alignment. Biotechnol Bioeng, 102(2): 624–631. https://doi.org/10.1002/bit.22080
Crabb R A, Chau E P, Evans M C, et al., 2006, Biomechanical and Microstructural Characteristics of a Collagen Film-Based Corneal Stroma Equivalent, Tissue Eng, 12(6): 1565–1575. https://doi.org/10.1089/ten.2006.12.1565
Zhu Y, Cao Y, Pan J, et al., 2010, Macro-alignment of electrospun fibers for vascular tissue engineering. J Biomed Mater Res B, 92(2): 508–516. https://doi.org/10.1002/jbm.b.31544
Bajaj P, Khang D and Webster T J, 2006, Control of spatial cell attachment on carbon nanofiber patterns on polycarbonate urethane. Int J Nanomed, 1(3): 361–365.
DOI: http://dx.doi.org/10.18063/ijb.v4i1.129
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Wafaa Arab, Sakandar Rauf, Ohoud Al-Harbi, Charlotte Hauser

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.