3D printing for drug manufacturing: A perspective on the future of pharmaceuticals
Vol 4, Issue 1, 2018, Article identifier:119
VIEWS - 7208 (Abstract) 969 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
Norman J, Madurawe R D, Moore C M V, et al., 2017, A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Advanced Drug Delivery Reviews, 108(1): 39–50. http://doi.org/10.1016/j.addr.2016.03.001
Wong J Y and Pfahnl A C, 2014, 3D printing of surgical instruments for long-duration space missions. Aviation Space and Environmental Medicine, 85(7): 758–763. http://doi.org/10.3357/ASEM.3898.2014
Cesaretti G, Dini E, De Kestelier X, et al., 2014, Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica, 93: 430–450. http://doi.org/10.1016/j.actaastro.2013.07.034
Murphy S V and Atala A, 2014, 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8): 773–785. http://doi.org/10.1038/nbt.2958
Tasoglu S and Demirci U, 2013, Bioprinting for stem cell research. Trends Biotechnol, 31(1): 10–19. http://doi.org/10.1016/j.tibtech.2012.10.005
Park J H, Jang J, Lee J S, et al., 2017, Three-dimensional printing of tissue/organ analogues containing living cells. Annals of Biomedical Engineering, 45(1): 180–194. http://doi.org/10.1007/s10439-016-1611-9
Lee V K and Dai G, 2017, Printing of three-dimensional tissue analogs for regenerative medicine. Annals of Biomedical Engineering, 45(1): 115–131. http://doi.org/10.1007/s10439-016-1613-7
Knowlton S, Yenilmez B, Anand S, et al., 2017, Photocrosslinking-based bioprinting: Examining crosslinking schemes. Bioprinting, 5: 10–18. http://doi.org/10.1016/j.bprint.2017.03.001
Knowlton S, Yenilmez B and Tasoglu S, 2016, Towards single-step biofabrication of organs on a chip via 3D printing. Trends in Biotechnology, 34(9): 685–688. http://doi.org/10.1016/j.tibtech.2016.06.005
Knowlton S, Joshi A, Yenilmez B, et al., 2016, Advancing cancer research using bioprinting for tumor-on-a-chip platforms. International Journal of Bioprinting, 2(2): 3–8. http://doi.org/10.18063/IJB.2016.02.003
Knowlton S, Yu C H, Ersoy F, et al., 2016, 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs. Biofabrication, 8(2): 25019. http://doi.org/10.1088/1758-5090/8/2/025019
Knowlton S, Onal S, Yu C H, et al., 2015, Bioprinting for cancer research. Trends in Biotechnology, 33(9): 504–513. http://doi.org/10.1016/j.tibtech.2015.06.007
Knowlton S M, Sencan I, Aytar Y, et al., 2015, Sickle cell detection using a smartphone. Scientific Reports, 5: 15022. http://doi.org/10.1038/srep15022
Knowlton S, Yu C H, Jain N, et al., 2015, Smart-phone based magnetic levitation for measuring densities. PLoS ONE, 10(8): 1–17. http://doi.org/10.1371/journal.pone.0134400
Amin R, Knowlton S, Yenilmez B, et al., 2016, Smart-phone attachable, flow-assisted magnetic focusing device. RSC Advances, 6(96): 93922–93931. http://doi.org/10.1039/C6RA19483D
Amin R, Knowlton S, Hart A, et al., 2016, 3D-printed microfluidic devices. Biofabrication, 8(2): 022001. http://doi.org/10.1088/1758-5090/8/2/022001
Yenilmez B, Knowlton S, Yu C H, et al., 2016, Label-free sickle cell disease diagnosis using a low-cost, handheld platform. Advanced Materials Technologies, 1(5): 1600100. http://doi.org/10.1002/admt.201600100
Knowlton S, Joshi A, Syrrist P, et al., 2017, 3D-printed smartphone-based point of care tool for fluorescence- and magnetophoresis-based cytometry. Lab Chip, 17: 2839–51. http://doi.org/10.1039/C7LC00706J
Yenilmez B, Knowlton S and Tasoglu S, 2016, Self-contained handheld magnetic platform for point of care cytometry in biological samples. Advanced Materials Technologies, 1(9): 1600144. http://doi.org/10.1002/admt.201600144
Giffi C A, Gangula B and Illinda P, 2014, 3D opportunity for the automotive industry. Deloitte University Press, New York.
Katstra W E, Palazzolo R D, Rowe C W, et al., 2000, Oral dosage forms fabricated by Three Dimensional PrintingTM. Journal of Controlled Release, 66(1): 1–9. http://doi.org/10.1016/S0168-3659(99)00225-4
Ursan I D, Chiu L and Pierce A, 2013, Three-dimensional drug printing: A structured review. Journal of the American Pharmacists Association, 53(2): 136–144. http://doi.org/http://dx.doi.org/10.1331/JAPhA.2013.12217
Chen C, Erkal J L, Gross B C, et al., 2014, Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical Chemistry, 86(7): 3240–3253. http://doi.org/10.1021/ac403397r
Singh M, Haverinen H M, Dhagat P, et al., 2010, Inkjet printing-process and its applications. Advanced Materials, 22(6): 673–685. http://doi.org/10.1002/adma.200901141
Scoutaris N, Alexander M R, Gellert P R, et al., 2011, Inkjet printing as a novel medicine formulation technique. Journal of Controlled Release, 156(2): 179–185. http://doi.org/10.1016/j.jconrel.2011.07.033
Alhnan M A, Okwuosa T C, Sadia M, et al., 2016, Emergence of 3D printed dosage forms: Opportunities and challenges. Pharmaceutical Research, 33(8): 1817–1832. http://doi.org/10.1007/s11095-016-1933-1
Mazzoli A, 2013, Selective laser sintering in biomedical engineering. Medical & Biological Engineering & Computing, 51(3): 245–256. http://doi.org/10.1007/s11517-012-1001-x
Tan K H, Chua C K, Leong K F, et al., 2003, Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials, 24(18): 3115–3123. http://doi.org/10.1016/S0142-9612(03)00131-5
Pardeike J, Strohmeier D M, Schrödl N, et al., 2011, Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. International Journal of Pharmaceutics, 420(1): 93–100. http://doi.org/10.1016/j.ijpharm.2011.08.033
Goole J and Amighi K, 2016, 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. International Journal of Pharmaceutics, 499(1–2): 376–394. http://doi.org/10.1016/j.ijpharm.2015.12.071
Sokolsky-Papkov M, Agashi K, Olaye A, et al., 2014, Polymer carriers for drug delivery in tissue engineering. Advanced Drug Delivery Reviews, 59(4–5): 187–206. http://doi.org/10.1016/j.addr.2007.04.001
Vehse M, Petersen S, Sternberg K, et al., 2014, Drug delivery from poly(ethylene glycol) diacrylate scaffolds produced by DLC based micro-stereolithography. Macromolecular Symposia, 346(1): 43–47. http://doi.org/10.1002/masy.201400060
Xing J-F, Zheng M-L and Duan X-M, 2015, Two-photon polymerization microfabrication of hydrogels: An advanced 3D printing technology for tissue engineering and drug delivery. Chemical Society reviews, 44(15): 5031–5039. http://doi.org/10.1039/c5cs00278h
Xu T, Jin J, Gregory C, et al., 2005, Inkjet printing of viable mammalian cells. Biomaterials, 26(1): 93–99. http://doi.org/10.1016/j.biomaterials.2004.04.011
Boland T, Xu T, Damon B, et al., 2006, Application of inkjet printing to tissue engineering. Biotechnology Journal, 1(9): 910–917. http://doi.org/10.1002/biot.200600081
Horváth L, Umehara Y, Jud C, et al., 2015, Engineering an in vitro air-blood barrier by 3D bioprinting. Scientific Reports, 5(1): 7974. http://doi.org/10.1038/srep07974
Ng W L, Wang S, Yeong W Y, et al., 2016, Skin bioprinting: Impending reality or fantasy? Trends in Biotechnology, 34(9): 689–699. http://doi.org/10.1016/j.tibtech.2016.04.006
Lee W, Debasitis J C, Lee V K, et al., 2009, Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials, 30(8): 1587–1595. http://doi.org/10.1016/j.biomaterials.2008.12.009
Panwar A and Tan L P, 2016, Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules, 21(6): 685. http://doi.org/10.3390/molecules21060685
Vaezi M and Chua C K, 2011, Effects of layer thickness and binder saturation level parameters on 3D printing process. International Journal of Advanced Manufacturing Technology, 53(1–4): 275–284. http://doi.org/10.1007/s00170-010-2821-1
Lam C X F, Mo X M, Teoh S H, et al., 2002, Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering C, 20(1–2): 49–56. http://doi.org/10.1016/S0928-4931(02)00012-7
Giordano R A, Wu B M, Borland S W, et al., 1997, Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. Journal of Biomaterials Science, Polymer Edition, 8(1): 63–75. http://doi.org/10.1163/156856297X00588
Antonov E N, Bagratashvili V N, Whitaker M J, et al., 2005, Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering. Advanced Materials, 17(3): 327–330. http://doi.org/10.1002/adma.200400838
Rimell J T and Marquis P M, 2000, Selective laser sintering of ultra high molecular weight polyethylene for clinical applications. Journal of Biomedical Materials Research, 53(4): 414–420. http://doi.org/10.1002/1097-4636(2000)53:4<414::AID-JBM16>3.0.CO;2-M
Wiria F E, Leong K F, Chua C K, et al., 2007, Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomaterialia, 3(1): 1–12. http://doi.org/10.1016/j.actbio.2006.07.008
Verbelen L, Dadbakhsh S, Van Den Eynde M, et al., 2016, Characterization of polyamide powders for determination of laser sintering processability. European Polymer Journal, 75: 163–174. http://doi.org/10.1016/j.eurpolymj.2015.12.014
Drummer D, Rietzel D and Kühnlein F, 2010, Development of a characterization approach for the sintering behavior of new thermoplastics for selective laser sintering. Physics Procedia, 5(PART B): 533–542. http://doi.org/10.1016/j.phpro.2010.08.081
Gusarov A V, Laoui T, Froyen L, et al., 2003, Contact thermal conductivity of a powder bed in selective laser sintering. International Journal of Heat and Mass Transfer, 46(6): 1103–9. http://doi.org/10.1016/S0017-9310(02)00370-8
Dupin S, Lame O, Barrès C, et al., 2012, Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering. European Polymer Journal, 48(9): 1611–1621. http://doi.org/10.1016/j.eurpolymj.2012.06.007
Water J J, Bohr A, Boetker J, et al., 2015, Three-dimensional printing of drug-eluting implants: Preparation of an antimicrobial polylactide feedstock material. Journal of Pharmaceutical Sciences, 104(3): 1099–1107. http://doi.org/10.1002/jps.24305
Skowyra J, Pietrzak K and Alhnan M A, 2015, Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. European Journal of Pharmaceutical Sciences, 68: 11–17. http://doi.org/10.1016/j.ejps.2014.11.009
Genina N, Hollander J, Jukarainen H, et al., 2016, Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. European Journal of Pharmaceutical Sciences, 90: 53–63. http://doi.org/10.1016/j.ejps.2015.11.005
Goyanes A, Buanz A B M, Basit A W, et al., 2014, Fused-filament 3D printing (3DP) for fabrication of tablets. International Journal of Pharmaceutics, 476(1): 88–92. http://doi.org/10.1016/j.ijpharm.2014.09.044
Goyanes A, Buanz A B M, Hatton G B, et al., 2015, 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. European Journal of Pharmaceutics and Biopharmaceutics, 89: 157–162. http://doi.org/10.1016/j.ejpb.2014.12.003
Okwuosa T C, Stefaniak D, Arafat B, et al., 2016, A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharmaceutical Research, 33(11): 2704–2712. http://doi.org/10.1007/s11095-016-1995-0
Ahmed E M, 2015, Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2): 105–121. http://doi.org/10.1016/j.jare.2013.07.006
Drotleff S, Lungwitz U, Breunig M, et al., 2004, Biomimetic polymers in pharmaceutical and biomedical sciences. European Journal of Pharmaceutics and Biopharmaceutics, 58(2): 385–407. http://doi.org/10.1016/j.ejpb.2004.03.018
Hoare T R and Kohane D S, 2008, Hydrogels in drug delivery: Progress and challenges. Polymer, 49(8): 1993–2007. http://doi.org/10.1016/j.polymer.2008.01.027
Bhattarai N, Gunn J and Zhang M, 2010, Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews, 62(1): 83–99. http://doi.org/10.1016/j.addr.2009.07.019
Qiu Y and Park K, 2012, Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 64(Supplement): 49–60. http://doi.org/10.1016/j.addr.2012.09.024
Gupta P, Vermani K and Garg S, 2002, Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discovery Today, 7(10): 569–579. http://doi.org/10.1016/S1359-6446(02)02255-9
Lee J M and Yeong W Y, 2016, Design and printing strategies in 3D bioprinting of cell-hydrogels: A review. Advanced Healthcare Materials, 5(22): 2856–2865. http://doi.org/10.1002/adhm.201600435
Yue K, Trujillo-de Santiago G, Alvarez M M, et al., 2015, Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 73: 254–271. http://doi.org/10.1016/j.biomaterials.2015.08.045
Serafim A, Tucureanu C, Petre D-G, et al., 2014, One-pot synthesis of superabsorbent hybrid hydrogels based on methacrylamide gelatin and polyacrylamide. Effortless control of hydrogel properties through composition design. New Journal of Chemistry, 38(7): 3112–3126. http://doi.org/10.1039/c4nj00161c
Hennink W E and van Nostrum C F, 2012, Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 64(Supplement): 223–236. http://doi.org/10.1016/j.addr.2012.09.009
Berger J, Reist M, Mayer J M, et al., 2004, Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57(1): 19–34. http://doi.org/10.1016/S0939-6411(03)00161-9
Akhtar M F, Hanif M and Ranjha N M, 2016, Methods of synthesis of hydrogels … A review. Saudi Pharmaceutical Journal, 24(5): 554–559. http://doi.org/10.1016/j.jsps.2015.03.022
Yu L, Zhang Z, Zhang H, et al., 2009, Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel. Biomacromolecules, 10(6): 1547–1553. http://doi.org/10.1021/bm900145g
Peppas N A, Bures P, Leobandung W, et al., 2000, Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50(1): 27–46. http://doi.org/10.1016/S0939-6411(00)00090-4
Qiao M, Chen D, Ma X, et al., 2005, Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. International Journal of Pharmaceutics, 294(1–2): 103–112. http://doi.org/10.1016/j.ijpharm.2005.01.017
Molina I, Li S, Martinez M B, et al., 2001, Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials, 22(4): 363–369. http://doi.org/10.1016/S0142-9612(00)00192-7
He Y, Yang F, Zhao H, et al., 2016, Research on the printability of hydrogels in 3D bioprinting. Scientific Reports, 6: 29977. http://doi.org/10.1038/srep29977
Fu Y and Kao W J, 2010, Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opinion on Drug Delivery, 7(4): 429–444. http://doi.org/10.1517/17425241003602259
Duffy C V, David L and Crouzier T, 2015, Covalently-crosslinked mucin biopolymer hydrogels for sustained drug delivery. Acta Biomaterialia, 20: 51–59. http://doi.org/10.1016/j.actbio.2015.03.024
Schoenmakers R G, van de Wetering P, Elbert D L, et al., 2004, The effect of the linker on the hydrolysis rate of drug-linked ester bonds. Journal of Controlled Release, 95(2): 291–300. http://doi.org/10.1016/j.jconrel.2003.12.009
Shen W, Zhang K, Kornfield J A, et al., 2006, Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nature Materials, 5(2): 153–158. http://doi.org/10.1038/nmat1573
Metters A T, Bowman C N and Anseth K S, 2000, A statistical kinetic model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks. The Journal of Physical Chemistry B, 104(30): 7043–7049. http://doi.org/10.1021/jp000523t
Martens P, Metters A T, Anseth K S, et al., 2001, A generalized bulk-degradation model for hydrogel networks formed from multivinyl cross-linking molecules. Journal of Physical Chemistry B, 105(22): 5131–5138. http://doi.org/10.1021/jp004102n
Wischke C, Neffe A T, Steuer S, et al., 2009, Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release. Journal of Controlled Release, 138(3): 243–250. http://doi.org/10.1016/j.jconrel.2009.05.027
Chen H, Li Y, Liu Y, et al., 2014, Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polymer Chemistry, 5(17): 5168–5174. http://doi.org/10.1039/C4PY00474D
Wang K, Strandman S and Zhu X X, 2017, A mini review: Shape memory polymers for biomedical applications. Frontiers of Chemical Science and Engineering, 11(2): 1–11. http://doi.org/10.1007/s11705-017-1632-4
Sydney Gladman A, Matsumoto E A, Nuzzo R G, et al., 2016, Biomimetic 4D printing. Nature Materials, 15(4): 413–418. http://doi.org/10.1038/nmat4544
Bakarich S E, Gorkin R III, in het Panhuis M , et al., 2015, 4D printing with mechanically robust, thermally actuating hydrogels. Macromolecular Rapid Communications, 36(12): 1211–1217. http://doi.org/10.1002/marc.201500079
Ge Q, Sakhaei A H, Lee H, et al., 2016, Multimaterial 4D printing with tailorable shape memory polymers. Scientific Reports, 6: 31110. http://doi.org/10.1038/srep31110
Gao B, Yang Q, Zhao X, et al., 2016, 4D bioprinting for biomedical applications. Trends in Biotechnology, 34(9): 746–756. http://doi.org/10.1016/j.tibtech.2016.03.004
Neffe A T, Hanh B D, Steuer S, et al., 2009, Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Advanced Materials, 21(32–33): 3394–3398. http://doi.org/10.1002/adma.200802333
Nagahama K, Ueda Y, Ouchi T, et al., 2009, Biodegradable shape-memory polymers exhibiting sharp thermal transitions and controlled drug release. Biomacromolecules, 10(7): 1789–1794. http://doi.org/10.1021/bm9002078
Kashif M, Yun B M, Lee K S, et al., 2016, Biodegradable shape-memory poly(ε-caprolactone)/polyhedral oligomeric silsequioxane nanocomposites: Sustained drug release and hydrolytic degradation. Materials Letters, 166: 125–128. http://doi.org/10.1016/j.matlet.2015.12.051
Musiał-Kulik M, Kasperczyk J, Smola A, et al., 2014, Double layer paclitaxel delivery systems based on bioresorbable terpolymer with shape memory properties. International Journal of Pharmaceutics, 465(1–2): 291–298. http://doi.org/10.1016/j.ijpharm.2014.01.029
Wache H M, Tartakowska D J, Hentrich A, et al., 2003, Development of a polymer stent with shape memory effect as a drug delivery system. Journal of Materials Science: Materials in Medicine, 14(2): 109–112. http://doi.org/10.1023/A:1022007510352
Xiao Y, Zhou S, Wang L, et al., 2010, Crosslinked poly(ε-caprolactone)/poly(sebacic anhydride) composites combining biodegradation, controlled drug release and shape memory effect. Composites Part B: Engineering, 41(7): 537–542. http://doi.org/10.1016/j.compositesb.2010.07.001
Banks J, 2013, Adding value in additive manufacturing: Researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse, 4(6): 22–26. http://doi.org/10.1109/MPUL.2013.2279617
Goyanes A, Robles Martinez P, Buanz A, et al., 2015, Effect of geometry on drug release from 3D printed tablets. International Journal of Pharmaceutics, 494(2): 657–663. http://doi.org/10.1016/j.ijpharm.2015.04.069
Reynolds T D, Mitchell S A and Balwinski K M, 2002, Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled-release matrix tablets. Drug Development and Industrial Pharmacy, 28(4): 457–466. http://doi.org/10.1081/DDC-120003007
Kamaly N, Yameen B, Wu J, et al., 2016, Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chemical Reviews, 116(4): 2602–2663. http://doi.org/10.1021/acs.chemrev.5b00346
Lee B K, Yun Y H, Choi J S, et al., 2012, Fabrication of drug-loaded polymer microparticles with arbitrary geometries using a piezoelectric inkjet printing system. International Journal of Pharmaceutics, 427(2): 305–310. http://doi.org/10.1016/j.ijpharm.2012.02.011
Khaled S A, Burley J C, Alexander M R, et al., 2014, Desktop 3D printing of controlled release pharmaceutical bilayer tablets. International Journal of Pharmaceutics, 461(1–2): 105–111. http://doi.org/10.1016/j.ijpharm.2013.11.021
Huang X and Brazel C S, 2001, On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release, 73(2–3): 121–136. http://doi.org/10.1016/S0168-3659(01)00248-6
Lin C C and Metters A T, 2006, Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews, 58(12–13): 1379–1408. http://doi.org/10.1016/j.addr.2006.09.004
Bailey J M and Haddad W M, 2005, Drug dosing control in clinical pharmacology. IEEE Control Systems Magazine, 25(2): 35–51. http://doi.org/10.1109/MCS.2005.1411383
Pietrzak K, Isreb A and Alhnan M A, 2015, A flexible-dose dispenser for immediate and extended release 3D printed tablets. European Journal of Pharmaceutics and Biopharmaceutics, 96: 380–387. http://doi.org/10.1016/j.ejpb.2015.07.027
Faralli A, Melander F, Larsen E K U, et al., 2014, Digital drug dosing: Dosing in drug assays by light-defined volumes of hydrogels with embedded drug-loaded nanoparticles. In Proceedings of the 2nd IEEE EMBS Micro and Nanotechnology in Medicine Conference.
Khaled S A, Burley J C, Alexander M R, et al., 2015, 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. Journal of Controlled Release, 217: 308–314. http://doi.org/10.1016/j.jconrel.2015.09.028
Khaled S A, Burley J C, Alexander M R, et al., 2015, 3D printing of tablets containing multiple drugs with defined release profiles. International Journal of Pharmaceutics, 494(2): 643–650. http://doi.org/10.1016/j.ijpharm.2015.07.067
Srai J S, Badman C, Krumme M, et al., 2015, Future supply chains enabled by continuous processing-opportunities and challenges May 20–21, 2014 Continuous Manufacturing Symposium. Journal of Pharmaceutical Sciences, 104(3): 840–849. http://doi.org/10.1002/jps.24343
Alomari M, Mohamed F H, Basit A W, et al., 2015, Personalised dosing: Printing a dose of one’s own medicine. International Journal of Pharmaceutics, 494(2): 568–577. http://doi.org/10.1016/j.ijpharm.2014.12.006
Gudeman J, Jozwiakowski M, Chollet J, et al., 2013, Potential risks of pharmacy compounding. Drugs in R and D, 13(1): 1–8. http://doi.org/10.1007/s40268-013-0005-9
DOI: http://dx.doi.org/10.18063/ijb.v1i1.119
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Eric Lepowsky, Savas Tasoglu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.