A dual crosslinking strategy to tailor rheological properties of gelatin methacryloyl
Vol 3, Issue 2, 2017, Article identifier:130-137
VIEWS - 2388 (Abstract) 1208 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
Abouna G M, 2008, Organ shortage crisis: Problems and possible solutions. Transplantation Proceedings, vol.40(1): 34–38.
http://dx.doi.org/10.1016/j.transproceed.2007.11.067
Ikada Y, 2006, Tissue engineering: Fundamentals and applications, Vol. 8, San Diego, USA.
Wüst S, Müller R and Hofmann, 2011, Controlled positioning of cells in biomaterials—Approaches towards 3D tissue printing. Journal of Functional Biomaterials, vol.2(3): 119–154.
http://dx.doi.org/10.3390/jfb2030119
Gu B K, Choi D J, Park S J, et al., 2016, 3-dimensional bioprinting for tissue engineering applications. Biomaterials Research, 2016. , vol.20(1): 12.
Murphy S V and Atala A, 2014, 3D bioprinting of tissues and organs. Nature Biotechnology, vol.32(8): 773–785.
http://dx.doi.org/10.1038/nbt.2958
Jungst T, Smolan W, Schacht K, et al., 2016, Strategies and molecular design criteria for 3D printable hydrogels. Chemical Review, vol.116(3): 1496–1539.
http://dx.doi.org/10.1021/acs.chemrev.5b00303
Hölzl K, Lin S, Tytgat L, et al., 2016, Bioink properties before, during and after 3D bioprinting. Biofabrication, vol.8(3): 032002.
http://dx.doi.org/10.1088/1758-5090/8/3/032002
Carrow, J K, et al., 2015, Polymers for bioprinting. In: Atala A and Yoo J J (editors), Essentials of 3D biofabrication and translation. Oxford, UK: Academic Press.
Peppas N A, Hilt JZ, Khademhosseini A, et al., 2006, Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Advanced Materials, vol.18(11): 1345–1360.
http://dx.doi.org/10.1002/adma.200501612
Gaetani R, Doevendans P A, Metz C H, et al., 2012, Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials, vol.33(6): 1782–1790.
http://dx.doi.org/10.1016/j.biomaterials.2011.11.003
Khalil S and Sun W, 2009, Bioprinting endothelial cells with alginate for 3D tissue constructs. Journal of Biomechanical Engineering, vol.131(11): 111002.
http://dx.doi.org/10.1115/1.3128729
Brandl F, Sommer F and Goepferich A, 2007, Rational design of hydrogels for tissue engineering: Impact of physical factors on cell behavior. Biomaterials, vol.28(2): 134–146.
http://dx.doi.org/10.1016/j.biomaterials.2006.09.017
DeForest C A and KS Anseth, 2012, Advances in bioactive hydrogels to probe and direct cell fate. Annual Review of Chemical and Biomolecular Engineering, vol.3: 421–444.
http://dx.doi.org/10.1146/annurev-chembioeng-062011-080945
Markstedt K, Mantas A, Tournier I, et al., 2015, 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules, vol.16(5): 1489–1496.
http://dx.doi.org/10.1021/acs.biomac.5b00188
Park J Y, Choi J C, Shim J H, et al., 2014, A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication, vol.6(3): 035004.
http://dx.doi.org/10.1088/1758-5082/6/3/035004
Duan B, Hockaday L A, Kang K H, et al., 2013, 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of Biomedical Materials Research Part A, vol.101A(5): 1255–1264.
http://dx.doi.org/10.1002/jbm.a.34420
Shanjani Y, Pan C C, Elomaa L, et al., 2015, A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication, vol.7(4): 045008.
http://dx.doi.org/10.1088/1758-5090/7/4/045008
Klotz BJ, Gawlitta D, Rosenberg AJ, et al., 2016, Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair. Trends in Biotechnology, vol.34(5): 394–407.
http://dx.doi.org/10.1016/j.tibtech.2016.01.002
Wang X, Yan Y, Pan Y, et al., 2006, Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Engineering, vol.12(1): 83–90.
http://dx.doi.org/10.1089/ten.2006.12.83
Yan Y, Wang X, Pan Y, et al., 2005, Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials, vol.26(29): 5864–5871.
http://dx.doi.org/10.1016/j.biomaterials.2005.02.027
Zhang T, Yan Y, Wang X, et al., 2007, Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury. Journal of Bioactive and Compatible Polymers, vol.22(1): 19–29.
http://dx.doi.org/10.1177/0883911506074025
Yan Y, Wang X, Xiong Z, et al., 2005, Direct construction of a three-dimensional structure with cells and hydrogel. Journal of Bioactive and Compatible Polymers, vol.20(3): 259–269.
http://dx.doi.org/10.1177/0883911505053658
Yue K, Trujillo-de Santiago G, Alvarez M M, et al., 2015, Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, vol.73: 254–271.
http://dx.doi.org/10.1016/j.biomaterials.2015.08.045
Schuurman W, Levett P A, Pot M W, et al., 2013, Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue – engineered cartilage constructs. Macromolecular Bioscience, vol.13(5): 551–561.
http://dx.doi.org/10.1002/mabi.201200471
Du Y, Lo E, Ali S, et al., 2008, Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proceedings of the National Academy of Sciences, vol.105(28): 9522–9527.
http://dx.doi.org/10.1073/pnas.0801866105
Yeh J, Ling Y, Karp J M, et al., 2006, Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials, vol.27(31): 5391–5398.
http://dx.doi.org/10.1016/j.biomaterials.2006.06.005
Nichol J W, Koshy S T, Bae H, et al., 2010, Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, vol.31(21): 5536–5544.
http://dx.doi.org/10.1016/j.biomaterials.2010.03.064
Billiet T, Gevaert E, De Schryver T, et al., 2014, The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, vol.35(1): 49–62.
http://dx.doi.org/10.1016/j.biomaterials.2013.09.078
Zhao L, Lib X, Zhao J, et al., 2016, A novel smart injectable hydrogel prepared by microbial transglutaminase and human-like collagen: Its characterization and biocompatibility. Materials Science and Engineering: C, vol.68(1): 317–326.
http://dx.doi.org/10.1016/j.msec.2016.05.108
Kieliszek M and Misiewicz A, 2014, Microbial transglutaminase and its application in the food industry. A review. Folia Microbiologica, vol.59(3): 241–250.
http://dx.doi.org/10.1007/s12223-013-0287-x
Williams C G, Malik A N, Kim T K, et al., 2005, Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, vol.26(11): 1211–1218.
http://dx.doi.org/10.1016/j.biomaterials.2004.04.024
Shirahama H, Lee BH, Tan LP, et al., 2016, Precise tuning of facile one-pot gelatin methacryloyl (GeLMA) synthesis. Scientific Reports, vol.6: 31036.
http://dx.doi.org/10.1038/srep31036
Lee B H, Shirahama H, Cho N J, et al., 2015, Efficient and controllable synthesis of highly substituted gelatin methacrylamide for mechanically stiff hydrogels. RSC Advances, vol.5(128): 106094–106097.
http://dx.doi.org/10.1039/C5RA22028A
McDermott M K, Chen T, Williams C M, et al., 2004, Mechanical properties of biomimetic tissue adhesive based on the microbial transglutaminase-catalyzed crosslinking of gelatin. Biomacromolecules, vol.5(4): 1270–1279.
http://dx.doi.org/10.1021/bm034529a
Wüst S, Godla M E, Müller R, et al., 2014, Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomaterialia, vol.10(2): 630–640.
http://dx.doi.org/10.1016/j.actbio.2013.10.016.
Malda J, Visser J, Melchels F P, et al., 2013, 25th anniversary article: Engineering hydrogels for biofabrication. Advanced Materials, vol.25(36): 5011–5028.
http://dx.doi.org/10.1002/adma.201302042
Das S, Pati F, Chameettachal S, et al., 2013, Enhanced redifferentiation of chondrocytes on microperiodic silk/gelatin scaffolds: Toward tailor-made tissue engineering. Biomacromolecules, vol.14(2): 311–321.
http://dx.doi.org/10.1021/bm301193t
Li H, S Liu and L Lin, 2016, Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide. International Journal of Bioprinting, vol.2(2): 54–66.
http://dx.doi.org/10.18063/IJB.2016.02.007
Yi J, Kim Y T, Bae H J, et al., 2006, Influence of transglutaminase‐induced cross‐linking on properties of fish gelatin films. Journal of Food Science, vol.71(9): E376–E383.
http://dx.doi.org/10.1111/j.1750-3841.2006.00191.x
Bae H J, Darby D O, Kimmel R M, et al., 2009, Effects of transglutaminase-induced cross-linking on properties of fish gelatin-nanoclay composite film. Food Chemistry, vol.114(1): 180–189.
http://dx.doi.org/10.1016/j.foodchem.2008.09.057
DOI: http://dx.doi.org/10.18063/IJB.2017.02.003
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Lay Poh Tan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.