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Blood-derived biomaterials for tissue graft
biofabrication by solvent-based extrusion
bioprinting
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Barakaldo, Spain
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Abstract

This article provides an overview of the different types of blood-derived biomaterials
that can be used as solvent additives in the formulation of inks/bioinks for use
in solvent extrusion printing/bioprinting. We discuss the properties of various
blood sub-products obtained after blood fractionation in terms of their use in
tailoring ink/bioink to produce functional constructs designed to improve tissue
repair. Blood-derived additives include platelets and/or their secretome, including
signaling proteins and microvesicles, which can drive cell migration, inflammation,
angiogenesis, and synthesis of extracellular matrix proteins. The contribution of
plasma to ink/bioink functionalization relies not only on growth factors, such as
hepatocyte growth factor and insulin growth factors, but also on adhesive proteins,
such as fibrinogen/fibrin, vitronectin, and fibronectin. We review the current
developments and progress in solvent-based extrusion printing/bioprinting with
inks/bioinks functionalized with different blood-derived products, leading toward
the development of more advanced patient-specific 3D constructs in multiple
medical fields, including but not limited to oral tissues and cartilage, bone, skin,
liver, and neural tissues. This information will assist researchers in identifying the
most suitable blood-derived product for their ink/bioink formulation based on the
intended regenerative functionality of the target tissue.

Keywords: Blood-derived products; 3D printing; Solvent-based extrusion;
Bioprinting; Functionalized bioinks; Plasma; Tissue grafts/implants

1. Introduction

In the context of therapeutic tissue engineering (TE) and regenerative medicine
(RM), biofabrication entails the automated production of complex living and non-
living biologically relevant products manufactured from living cells, native matrices,
biomaterials, and molecules using different devices!"?. Here, we focus on one of the
most commonly used technologies, solvent-based extrusion (SBE) (bio)printing. In this
context, solvents containing printable biomaterial composites (chiefly hydrogels) and
optional additives are extruded through a nozzle in a layer-by-layer additive manner using
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mechanically, piston, or pneumatically driven tools. Once
deposited, their shape is maintained by gelification of the
ink/bioink by means of induced physicochemical reactions.
There are two modalities, ink vs. bioink, that differ in the
presence of cells in the extruded biomaterial. Primarily,
solvent-based extrusion three-dimensional (3D) printing
entails the building of scaffolds with tailored geometry but
without cells®*\. To create living constructs, 3D printing
can be followed by cell seeding. However, depending on
the geometry of the printout, the access of cells to the
core of the construct can be problematic. In contrast,
SBE bioprinting uses bioinks (i.e., cell-laden inks), thus
implementing the concurrent biofabrication of the scaffold
and cellular components for the additive manufacturing of
living tissue structures!®. Composite inks/bioinks can be
formulated by adding blood-derived products to printable
hydrogels. When platelets are added to the solvent, the
distinction between ink and bioink is blurred, as platelets
are considered anucleated cells. Although platelets lack
genomic DNA, they contain various RNA biotypes,
including coding mRNAs, and the translational machinery
needed to translate them into proteins. Thus, just like cells,
they can react to environmental stimuli granting biological
complexity to printable biomaterials””.. However, platelets
lack other cellular attributes, such as growth and replication
capacities. In the clinical context, regulatory authorities
have classified autologous platelet-rich plasma (PRPs) as
“non-standardized medicinal products” instead of advanced
therapies. Therefore, printable biomaterials loaded with
platelets would have different regulatory considerations
than printable biomaterials loaded with cells.

Bioprinting technologies are used in biomedical
research for several purposes, such as creating disease
models'®, drug screening, basic cell biology, or the creation
of functional implants with structural organization. Due to
injuries, disease, surgery, and other reasons, a large number
of patients with tissue defects need graft implantation.
Both SBE approaches, 3D printing and bioprinting, can be
explored in therapeutic tissue engineering and regenerative
medicine to create mature competent tissue grafts that
integrate within the host tissue once they are implanted.
The medical need for tissue grafts is particularly important
when tissue defects exceed a critical size. Scalable methods
include the development of engineering strategies and
the creation of microtissue building blocks (with fewer
limitations in nutrient transport) that could fuse to generate
a competent implant, either in vitro or with the use of the
body as a bioreactor. Other challenges involve reproducing
the vasculature and metabolic state of the organ. In one
instance, microtissue building blocks were bioprinted and
cultured chondrogenically to create a competent tissue
graft, and the process of microtissue maturation and

fusion in vitro was guided using a 3D-printed polymer
framework!..

Ink and bioink formulations are at the core of these
technologies, requiring bioink components to interact
in non-trivial ways. Several (bio)printed tissue grafts,
such as nerve grafts!"”, blood vessels and vascular
networks!"!,  tracheal implants™, liver!, bone!™,
cartilage", vascular!'®, and parathyroid grafts!'”), have
been implanted into animals to study their functionality
(Figure 1). However, the clinical translation of these
products faces notable challenges for several reasons,
mainly related to predictability. First, due to sub-optimal
experimental models, there is no full understanding of the
physiological complexity involved, including the dynamic
integration of multiple components (i.e., biomaterials,
different cell phenotypes, and a large array of signaling
proteins) and their interactions with the host tissue/organ.
Many of the critical mechanisms of tissue repair rely on
the close interplay between cells and the dynamic tissue
microenvironment through molecular signaling!'®l.

Therefore, to fulfill as many requirements as possible
regarding the predictability of bioprinted scaffolds, an
utmost need is the correct functionalization of the bioink
with signaling molecules. For example, Sun et al.l'’
bioprinted functionalized scaffolds with transforming
growth factor beta 3 (TGF-b3) and connective growth
factor (CTGF) mixed with bone marrow stromal cells
(BMSCs) for intervertebral disc (IVD) regeneration.
In another example, a 3D-printed polycaprolactone
microchamber was coated with platelet-derived growth
factors (PDGFs) and bone morphogenetic protein 2
(BMP-2), and spheroids containing adipose stromal cells
(ASCs) were cultured within the microchambers for
dual growth factor delivery in bone regeneration™. In
another example, methacrylated hyaluronic acid (MeHA)
combined with collagen bioink was loaded with nerve
growth factor (NGF), glial cell-derived neurotrophic factor
(GDNEF), and Schwann cells?!.

However, the functionalization of bioinks with single/
dual growth factors does not approach the immense
complexity of cell communication and competent
tissue biofabrication. Alternatively, biomaterials can be
functionalized with tailored blood-derived products
to transform inert biomaterials into reactive (stimuli-
response) biomaterials, drawing inspiration from
physiological repair mechanisms in which hemostasis
(blood clot formation, fibrin formation) is the starting
point, and platelet degranulation and secretome release
trigger the regenerative cascade!™.

Thisarticle describesthe different types of blood-derived
biomaterials that can be used in solvent-based extrusion
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Figure 1. Solvent-based extrusion 3D printing/bioprinting for tissue grafts.

printing/bioprinting and discusses the potential of various
blood sub-products obtained after blood fractionation for
tailoring (bio)ink properties for printability and anticipated
functionality. We also review the current progress of
bioprinting using bioinks functionalized with different
blood-derived products, leading toward the development
of more advanced patient-specific 3D constructs.

2. Blood-derived biomaterials as bioink
components

In this section, we will discuss the properties of blood-
derived products in regenerative medicine, considering
that most of our understanding originated in transfusion
science. In fact, whole blood (versus plasmapheresis) is
the most common type of blood donation and is often
efficiently fractionated into several components, i.e.,
red cell concentrates (45%), platelet concentrates (PCs;
1%), and plasma (fresh-frozen plasma [FFP]; 55%), to
be transfused according to specific patients’ needs*?. In
addition, approximately 30% of the plasma recovered from
whole blood donations is used to produce plasma-derived
medicinal products, which include cryoprecipitates that
can be further processed by blood technological companies
to prepare immunoglobulins, fibrinogen, or coagulation
factors, such as factor VIII, factor XIII, and von Willebrand
factor.

2.1.Terminology
The terminology for blood-derived products differs
slightly between the transfusion and regenerative medicine

contexts. The therapeutic use of autologous PRP at the
point of care, for managing musculoskeletal conditions,
difficult to heal wounds, or other ambulatory conditions,
relies on the availability of Conformité Européenne (CE)-
marked manufacturing devices (commonly centrifuges)
and kits. These medical devices and associated protocols
guarantee appropriate sterility, feasibility, and compliance
with legal requirements. However, these medical devices,
intended for clinical routine, are diverse, thereby obtaining
PRP in different compositions. In the context of autologous
PRP therapies, the different terminologies are contingent
on cellular composition, e.g., the presence or absence of
leukocytes distinguishes leukocyte-rich and platelet-rich
plasma (L-PRP and pure PRP, respectively), and on the
enrichment of platelets relative to peripheral blood®’.. On
the other hand, platelet concentrates (PCs) in transfusion
have higher concentrations of platelets than pure PRP (in
regenerative medicine), but both are leukocyte-depleted
to prevent immunological reactions, particularly for
allogeneic uses. In general, bioinks are prepared from
blood bank products that do not meet quality control
requirements or are outdated for transfusion purposes.
For example, it is known that PCs can be stored for up
to 5 days at room temperature under gentle agitation.
Thereafter, room temperature storage results in progressive
loss of platelet discoid shape, hindering circulation and
functionality as a hemostatic agent. At this point, expired
PCs are a source material for additional manipulations to
produce sub-products for use in regenerative medicine®'l.
For instance, platelet lysate can replace bovine serum
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Figure 2. Types of blood-derived products. Abbreviations: FFP, fresh-frozen plasma; PPP, platelet-poor plasma; PC, platelet concentrate; RBC, red blood
cell concentrate; SDFFP, serum-converted fresh-frozen plasma; PL, platelet lysate; FTPL, frozen thawed platelet lysate; SCPL, serum-converted platelet

lysate; PPL, platelet pellet lysate; PLEv, platelet extracellular vesicles.

to expand cells for transplantation®. In addition,
biofabrication/bioprinting technologies can be upgraded
by introducing platelet lysate into the bioink formulation,
thereby harnessing the unique features of the platelet
secretome!®!. The bioink composition determines the
functional characteristics of the construct. A bioink is
designed not only to deliver cell/biological molecules but
also to function as a system to support cellular function
and organization or to trigger communication between
varjous cellular compartments in vivo. The addition of
the platelet secretome, rich in neurotrophic factors and
anti-oxidative and anti-inflammatory molecules, can
upgrade the functionality of biomaterial inks*. Blood-
derived products reliant on the properties of the platelet
secretome include platelet lysate, frozen-thawed platelet
lysate, serum-converted platelet lysate, and platelet pellet
lysate”?8. On the other hand, platelet-poor plasma (PPP),
frozen-thawed PPP, serum-derived PPP, and fibrinogen
can be obtained after platelet and/or fibrinogen depletion
and therefore confer different biological properties on
the final bioink formulation (Figure 2). Because bioinks
contain cells from allogeneic donors, in some instances,
heat treatment at 56°C for 30-60 min is performed to
inactivate the immunological components (C3, C4, and
other major proteins in the complement pathways and
immune system). Moreover, proteolytic enzymes such as
thrombin are inactivated. However, the stability of growth

factors and cytokines is often compromised by these
treatments. A potential procedure to avoid this drawback
is lyophilization, which allows the availability of ready-to-
use bioink components®'.

2.2. Platelet-rich plasma

2.2.1. Platelet secretome

Information regarding both the physiology of platelets
and the properties of plasma is crucial to take advantage
of these cells for tissue regeneration®*!l. Platelets are
anucleated cells originating from the partitioning of the
megakaryocyte cytoplasm in the bone marrow. They enter
the blood stream, where they circulate at a concentration
of 250,000 plt/uL for approximately 10 days before being
destroyed in the spleen. Traditionally, they have been best
known for their role in hemostasis. However, less than
1/10 of the circulating platelets are needed to fulfill this
function™!.

Thus, what other roles do platelets perform in
regenerative medicine, and what advantages could they
provide in bioprinting technologies?

The platelet proteome contains approximately 5200
proteins, of which a large pool is stored in the 50-80
alpha granules present per platelet®?. Alpha granules are
dense vesicles (200-500 nm) containing growth factors
and cytokines, antioxidants, and adhesion molecules
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synthesized by megakaryocytes (their parent giant cells
located in the bone marrow, spleen, and lungs) before
platelet segmentation and release into the blood stream.
In addition, these molecules can be captured from the
peripheral blood by endocytosis through the open
canalicular system. Furthermore, each platelet contains
5-8 dense granules, which are 200-300 nm in diameter
and contain 5-hydroxytryptamine (5-HT), adenosine
diphosphate (ADP), adenosine triphosphate (ATP), Ca*,
and pyrophosphates®’l. Several studies have analyzed the
proteomes of different blood derivatives and established
the link with healing functions®.

Furthermore, platelet extracellular vesicles (pEVs) have
captured recent attention as a sub-platelet therapy®>*°l.
Essentially, platelets have a propensity to generate
extracellular vesicles, with a yield of 10-160 pEVs/platelet;
thus, in typical clinical-grade PC containing 4-7 x 10"
platelets, approximately 10-10"* pEVs can be found.
Platelet vesicle heterogeneity is dictated by the activation
stimulus that triggers their formation: microvesicles (0.1-
1 um diameter) shed from the platelet membrane and
exosomes ",

2.2.2. Functional attributes and biological
mechanisms

The functionality of a bioink depends on the kinetics of
cytokine release, which may cause changes in cell behavior
(e.g., differentiation of cells, expression of particular
genes). These changes should be beneficial, and the
fabrication process must be designed such that the changes
are predictable and the environment of the cell is not
changed beyond healthy regenerative bounds. Moreover,
the use of blood-derived biomaterials must not sacrifice the
structural goals for the bioprinted scaffold. The functional
priorities during bioink formulation must be determined
according to the application. For example, the bioprinting
of wound dressings does not require research focused on
the long-term stability of bioprinted constructs under cell
culture conditions®”. Instead, functional properties such
as the ability to recruit defined populations of immune cells
(without eliciting an unresolved inflammatory response)
and the ability to drive vascular ingrowth and innervation
should be explored®!. In contrast, the effectiveness
of bioprinted cartilage implants relies not only on the
biological properties but also on the mechanical stability.
In the context of tissue graft biofabrication, two paramount
objectives are controlling the immune system to prevent
graft rejection and promote integration.

Specific evaluation of printouts for tissue grafting
purposes is focused on several functional attributes:
maintaining the cell phenotype and function, shaping
the immune response to graft implantation, and driving

the maturation and integration within the host tissue by
promoting cell trafficking and angiogenesis. These can be
considered as prerequisites for cross-platform validation,
in vitro and in vivo. Adding platelets to the bioink can
influence the immunomodulatory properties of the tissue-
engineered graft as an approach to reduce graft rejection.
Platelets secrete a broad array of chemotactic proteins with
the potential to recruit cells from the vasculature to the
graft and activate them to initiate tissue repair. Chemokines
are low-molecular-weight proteins (8-10 kDa) that trigger
signaling by binding to CXCR1 and CXCR2 receptors
expressed by immune cells, including neutrophils and
monocytes/macrophages. Moreover, the polarization status
of monocytes/macrophages can be shaped toward M2 in
the presence of platelets*!. Furthermore, platelets are key
regulators of angiogenesis, releasing both promoters of
vascular development, such as basic fibroblastic growth
factor (bFGF), endothelial growth factor (EGF), vascular
endothelial growth factor (VEGF), hepatocyte growth
factor (HGF), and anti-angiogenic proteins, including but
not limited to thrombospondin (TSP) and platelet factor 4
(PF-4). These are a few examples of platelet contributions
within a tissue-healing microenvironment.

2.3. Fresh-frozen plasma

Another blood component frequently used in printing/
bioprinting is FFP. This biomaterial is available in larger
volumes than PCs but contains few signaling proteins.
However, its stability is a major asset, as plasma frozen
at -18°C within 8 h of collection can be stored for up
to 7 years at -65°C. Plasma is made of 91%-92% water
combined with 8%-9% solid materials, including pro-
coagulant factors, predominantly fibrinogen, which is
responsible for hemostasis. Additional plasmatic proteins,
such as albumin and globulin, help to maintain the
colloidal osmotic pressure at approximately 25 mmHg.
Electrolytes, sodium, potassium, bicarbonate, chloride,
and calcium ions maintain pH; immunoglobulins help
fight infections. The complex formulation of plasma could
contribute exceptionally to the design of bioink, tailoring
its mechanical, biochemical, and immunological properties
depending on the targeted tissue or biological mechanism.

Another of the main advantages of plasma products
is the two physical configurations of the material: liquid
or gel after the addition of exogenous activators. On the
one hand, liquid plasma facilitates mixture with other
biomaterials; on the other hand, gel-like consistency gives
it a complex fibrillary internal structure, which acts as
its own “smart” support matrix that allows the release of
biomolecules into the microenvironment. Calcium ions
(Ca**) and thrombin are some of the most commonly used
activators to promote the internal network structure of
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plasma-based hydrogels. The concentration and the process
temperature directly affect the rheological properties, i.e.,
viscosity. From a rheological point of view, plasma as a
liquid material presents a complex shear modulus (G*)
close to zero, increasing in consistency when it is mixed
with activators such as thrombin or calcium solutions.
The clotting of plasma occurs with the conversion of
fibrinogen into fibrin. Plasma hydrogels present a non-
linear viscoelastic response under shear deformation.

2.4. Fibrinogen/fibrin

Fibrinogen is an abundant blood glycoprotein
(concentration 2.0-4.0 g/L), produced by hepatocytes in
the liver. It is involved in hemostasis and clot formation.
Briefly, upon platelet activation, plasma prothrombin
converts into thrombin (in the presence of Ca?*) and
cleaves soluble fibrinogen, releasing fibrinopeptides A and
B. In doing so, thrombin transforms plasmatic fibrinogen
into insoluble fibrin networks with large pores and high
permeability. Fibrinogen/fibrin is a crucial component
of most blood-derived products but removed in serum-
converted fresh-frozen plasma and serum-converted
platelet lysates (Figure 2).

Alternatively, purified fibrinogen is prepared by
cryoprecipitation or chemical precipitation and embodies
commercial preparations of fibrin glue or fibrinogen
adhesives. The latter also includes thrombin and CaCl,
to be mixed at the point of care for tissue sealing. The
resulting fibrin networks are composed of highly branched
fibers and are less prone to lysis than plasma clots.

3. Progress in plasma-functionalized
bioinks

The use of 3D printing/bioprinting in tissue grafting
will only grow as new bioinks match the complexity
and dynamic nature of healing mechanisms. In this
section, we will discuss how SBE printing/bioprinting
platforms can benefit from the broad family of blood-
derived products and how these products, depending on
the specific formulation, can influence printability and
rheology and confer biologically relevant properties on
the construct. Thus, the ideal bioink should have several
properties: (i) good printability, (ii) non-toxicity and no
immunological reactions, (iii) good mechanical stability
after curing, (iv) good biodegradability, (v) mimicry
of the in vivo microenvironment, and (vi) the support
and promotion of cellular activities (i.e., proliferation,
migration, or differentiation).

The main bioink component for solvent extrusion is a
shear-thinning hydrogel that can flow during extrusion and
protect cells from shear stresses. Hydrogels are hydrophilic

physically and chemically crosslinked polymers. They
possess a high water content, which provides a suitable
microenvironment for soluble protein retention (growth
factors, chemokines, and cytokines), gradient formation,
and diffusion to influence cell behavior and tissue
repair/regeneration. When mixing biomaterials with
blood-derived products, the retention/release of healing
factors depends on the plasma formulation and specific
characteristics (functional groups) and processing of the
hydrogel, i.e., sterilization for clinical translation and
crosslinking reactions to maintain the stability of the tissue
constructs.

Knowledge about the anatomy and physiology of the
target tissue guides the functionalization strategy and
the choice of inductive tissue components, specific cell
phenotypes, or cell aggregates to be loaded within the
hydrogels. This systematic review reveals that some blood
biomaterials, such as fibrinogen, are used as inductive
elements and to enhance printability, while others are used
for printable hydrogel functionalization. In some instances,
blood-derived biomaterials are included in the bioink
formulation, used as a cell carrier in the bioprinting system,
or added to the bioprinted scaffold. Table 1 summarizes
research organized by target tissue, and Table 2 lists studies
involving multipurpose bioinks.

In any case, the use of blood-derived biomaterials in
bioprinting platforms has been preliminarily explored to
meet the specific demands of both soft and hard tissues,
but these approaches are still in the early stages of research
and far from providing therapeutic solutions. In fact,
most of the research is in technology readiness level 2-3
(TRL 2-3), and only one study includes a proof of concept
(TRL4) (reviewed in Perez-Valle, Del Amo and Andia,
2020). In vivo studies are needed to assess the integration
and function of the construct in animal models mimicking
the clinical problem.

Several additives should be included in bioink
formulations to fulfill printability requirements and
match the mechanical properties of the target tissue.
For example, alginate is an anionic polysaccharide and a
common ingredient in many bioinks because of its low
immunological profile. It is often combined with other
hydrophilic polymers (11 out of 21 studies, 52%), such
as poly(ethylene glycol) (PEG) for cartilage!, gelatin
(protein) for dermal tissue”, methacrylated gelatin
(GelMA) for islet organoids™, or agarose (polysaccharide)
for cardiac tissuel® (Table 1). However, these bioinert
hydrogels cannot create biomimetic tissue unless they
are provided with RGD domains for cell attachment and
functionalized with cytokines and growth factors to boost
cell activities.
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To improve the functionality of a multipurpose
alginate:methylcellulose (3% ALG:9% MC) ink, FFP was
added in four studies™” ® 772 The tissue specificity of
this multipurpose ink (3% ALG, 9% MC) was achieved
with specific additives, such as calcium phosphate cement
(CPC) for bone* and/or choosing the cell phenotype
or cell aggregates and tissue inductive biomaterials. For
example, after being supplemented with CPC and loaded
with mesenchymal stem cells (MSCs), this ink was
investigated for bone biofabrication”. Using a coaxial
bioprinting system, Taymour ef al.l®! created different liver
compartments to examine the cellular interactions between
human hepatocellular carcinoma and mouse fibroblasts
encapsulated in Matrigel and FFP, respectively. In addition
to specific cytokines, such as insulin-like growth factor
1 (IGF-I) and hepatocyte growth factor (HGF), FFP
delivers fibronectin, which provides RGD domains for
cell attachment (anchorage). In contrast, PC (or PRP) is
richer than FFP in signaling proteins. Notwithstanding the
molecular richness of the platelet secretome, a comparison
between alginate dissolved in platelet lysate or FFP showed
no relevant differences. When pancreas porcine islet-like
cell clusters were encapsulated in bovine serum albumin
(BSA)-algMC (control), FFP-algMC, or PL-algMC (3%
alg 9% MC), the results showed higher cell viability in the
constructs containing FFP or platelet lysate, but there was
no difference in the restoration of insulin secretion over 4
weeks in vitro”!. These outcomes may indicate a lack of
availability of cytokines by encapsulated cells, potentially
due to high hydrogel concentrations (3% ALG: 9% MC).

Bioprinting research in the development of tissue
substitutes involves soft and hard tissue constructs.
Generally, soft (e.g., liver, pancreas) and hard (e.g.,
bone) or semi-hard (e.g., cartilage) tissues have different
biological and structural complexity in terms of cellularity
and phenotype variety and functional requirements. Soft
tissues, such as neural or endocrine tissues, can have a
more complex biology, while hard and semi-hard tissues
have to meet demanding mechanical requirements to
tulfill their function.

3.1. Hard and semi-hard tissues

3.1.1. Bone

Two studies bioprinted bone with different strategies®* "%,
but both used bone mineral (CPC and tricalcium phosphate
[TCP], respectively) to exploit their osteoconductive
properties. The different strategies using blood derivatives
illustrate the breadth of the possibilities. In one case, a
multipurpose bioinert biomaterial composite (ALG/MC)
was supplemented with FFP before bioprinting to add
biological properties to the MSC-loaded bioink, enhancing
cell proliferation, migration, and differentiation™”. In the

other case, Wei et al.** used a very different strategy; they
3D-printed a composite scaffold (silk fibroin, hyaluronic
acid [HA], gelatin, TCP), which was subsequently coated
with PRP prior to adipose stem cell (ADSC) seeding.
In the printed construct, PRP promoted cell adhesion,
proliferation, survival, and some aspects of differentiation
toward the osteogenic lineage. Thus, PRP was considered a
useful osteoconductive and osteoinductive supplement. The
former was attributed to the fibrinogen/fibrin component
and the latter to the platelet and plasma secretome. Recently,
a personalized bone graft was implanted in a young
oncologic patient; the bone implant was manufactured
with PCL/B-TCP/PRP*!. After 7 months, the bone implant
showed promising integration based on observation from
X-ray and CT images. Although anecdotic, this is a pioneer
report showing the clinical feasibility of graft bioprinting.
Bone vascularization is crucial for long-term survival of
the graft and bone remodeling. A bone graft created with
PRP-GA@Lap/PCL has shown regenerative properties in
preclinical examination™®l.

3.1.2. Cartilage

Because of the increasing clinical demand and the
intrinsic lack of healing resources (avascular, aneural, and
alymphatic), cartilage biofabrication is a major challenge
in tissue engineering. Cartilage constructs must mimic the
mechanical properties/requirements of the host tissue, e.g.,
knee articular cartilage. GelMA is a hydrogel with printable
properties and the ability to support ADSC encapsulation.
The addition of human platelet lysate (hPL) to GelMA
enhanced viscosity and ADSC spreading, proliferation,
and osteogenic differentiation in a concentration-
dependent manner”. Three studies investigated the
possibility of manufacturing cartilage-like tissue by adding
blood derivatives to PEG/ALG*®!, GelMA®, or PEG/silk
fibroin compositel. However, the technology readiness
level was low (TRL3), and the results were limited to the
cell proliferation, viability, and histology in the constructs.
De Melo et al."*! used a combined strategy: first, to mimic
the mechanical properties of the cartilage extracellular
matrix (ECM), they printed 20% PEG/2.5% ALG scaffolds
with strong mechanical properties and cartilage-like tissue
resilience and elasticity. In parallel, to mimic the pericellular
cartilage, they prepared human mesenchymal stem cell
(hMSC) spheroids using fibrinogen (microaggregating
cells in micrometer-sized spheroids) with a microwell
technique. PEG/ALG gel served as the supporting bath,
and thrombin was added to the supporting bath to trigger
fibrin polymerization. Fibrin showed diffusive capacity
and a fast permeation rate, favoring optimal cell viability
and the chondrogenic-like differentiation of hMSC
spheroids. Likewise, 80% PEG was combined with silk
fibroin supplemented with PRP (8x enrichment) to confer
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biological activities and loaded with rabbit chondrocytes*l.

Its in vitro results pointed to efficient expression of
cartilage ECM molecules, which was also confirmed in
immunohistological analyses, with promising results in
mechanical and degradation tests. Subsequent mixing
with PEG optimized the printability. The maturation of
the cell-laden bioprinted constructs and the histological
and biochemical (sulfated glycosaminoglycan [sGAG])
characterization revealed cartilage-like properties in pre-
clinical in vitro research.

The preliminary accomplishments in the creation of gel-
MA/PRP constructs could be explained by the sustained
release of growth factors for 35 days®. In these studies,
constructs were kept in in vitro environments but in any
case staffed with bioreactors. Irmak and Giimtsderelioglu
optimized GelMA conjugation with PRP via platelet
integrin receptors to provide optimal rheological properties
to PRP for printability®?. Printouts fabricated with this
composite hydrogel, loaded with a murine chondrocyte cell
line, showed chondrogenic properties in vitro. In addition,
the release of growth factors was slow and sustained, and
as a result, the constructs showed cartilage-like properties
on histologic evaluations.

3.2. Soft tissues

3.2.1. Cardiac muscle

A major limitation in treating cardiac injury is the failure
of current therapies to induce myocardial regeneration
and cardiomyogenesis. One possible avenue is to engineer
cardiac tissue via 3D bioprinting. As platelet-rich fibrin
(PRF) has already been found to deliver competent cells
to the injured myocardium”-7, this function provides the
initial hypothesis for adding PRF to bioink formulations.

To fabricate cardiac patches, Kumar et al.* optimized
a previously developed bioink based on a mixture of
gel-furfuryl, hyaluronic acid (HA), and Rose Bengal
by incorporating fibrinogen. They crosslinked the
composite using a two-step process, first irradiation with
visible light followed by thrombin/CaCl, crosslinking of
fibrinogen/fibrin®*. Adding fibrinogen to their former
bioink formula provoked a change in scaffold patterns
(herringbone pattern) coupled to a reduction in porosity,
resulting in improved elastic behavior and mechanical
stiffness compatible with the fabrication of cardiac
patches. Moreover, induced pluripotent stem cells (iPSCs),
cardiomyocytes (CMs), and cardiac fibroblasts printed
within the fibrin-gelatin construct could withstand
extrusion printing and subsequent dual crosslinking and
showed cell growth and proliferation. In addition to viable
cell behavior, they revealed heterocellular coupling between
excitable CMs and non-excitable cardiac fibroblasts via
connexin-43 (Cx43), leading to ECM secretion. Their

interest in fibrinogen was derived from studies involving
the use of patient PRF to deliver CM for cardiac tissue
injuries.

CM spatial orientation is paramount for unidirectional
contraction, and cell viability is essential to build cardiac
tissue patches. Maiullari et al.*® took advantage of the 3D
bioprinting potential to create constructs with various
cell organizations (IPSCs-CM and human umbilical vein
endothelial cells [HUVECs]) and specific cell orientations.
Using microfluidics, the flow of two different bioinks was
controlled, and constructs with different cell distributions
were created and tested for optimal functionality and
the formation of blood vessel-like structures. Constructs
were cultured for 2 weeks and matured in vascularized
functional tissues. Proof of concept was achieved after
subcutaneous implantation in mice.

To solve the shortage of organ donors, a novel organ
biofabrication method has been proposed!*!. To meet the
challenge of biofabricating a large structure with hollow
interiors that could support cell metabolism within the
structure, Zou et al.** used polyvinyl alcohol (PVA) as a
sacrificial scaffold with a bioink made of alginate/agarose
combined with 20% PRP and loaded with HUVECs and
H9c2 cells. In doing so, they showed the potential of the
multichannel structure for nutrient delivery.

3.2.2. Cornea

Corneal disease leading to visual impairment is a common
problem in ophthalmology that imposes significant
economic and social burdens. The cornea is avascular,
and transparency is a main attribute. Bioprinting corneas
could help to minimize these problems. Few studies
have been performed, and the goal was not to bioprint
the full cornea but to heal corneal defects by in vivo
deposition of the bioink. A major requirement of bioink
and bioprinted constructs is maintaining transparency.
Frazer et al.®® optimized the bioink composition and the
concentrations of fibrinogen and platelet lysate(PL) in
terms of transparency preservation and wound-healing
properties and examined ex vivo bioprinting precisely
within a corneal defect as a proof of concept. Similarly, You
et al.” used 3D-bioprinted grafts with hPL and fibrinogen
to repair corneal full thickness perforations in rabbits.

3.2.3. Skin

Full-thickness skin defects occur due to multiple
circumstances, large-scale burns, traumatic injuries,
pressure, vascular and diabetic ulcers. In situ bioprinting
directly delivers cells and biomaterials after scanning the
morphological features of the wound after debridement.
The successful treatment of non-healing wounds is an
open research area, as no effective solutions have yet been
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found. Accurate deposition of healing components within
the tissue defect is a shared goal in the treatment of corneal
ulcers and skin ulcers. In this context, in situ bioprinting
has been performed using fibrinogen mixed with collagen
and loaded with fibroblasts and keratinocytes in murine
and porcine excisional wound models®!. Similarly, in
situ bioprinting was performed in full-thickness burn
wounds in pigs using fibrinogen mixed with HA loaded
with MSCs from umbilical cords (UC-MSCs)[®?l, Likewise,
in situ extrusion bioprinting was performed in a rat full-
thickness wound using PRP combined with an alginate-
gelatin hydrogel loaded with dermal and epidermal cells™ .
Cubo et al.® pioneered skin bioprinting and developed
the concept of bioink functionalization with plasma. They
created full-thickness wounds in immunodeficient mice
and tested the feasibility and efficacy of bioprinting human
plasma combined with additional fibrinogen and loaded
with dermal cell. However, these pioneering studies used
FFP as an additive (PPP, plasma without platelets). Whether
PRP or PPP is more effective in wound healing bioprinting
was examined in two studies”” . The creation of advanced
dermal patches using bioprinting technologies with PRP
as a means to engineer the biological environment of the
wound was reported by Del Amo et al.®.. They formulated
different bioinks, i.e., ALG/PRP and adipose ECM/PRP.
Both bioinks were compared with PPP bioinks to further
assess the specific properties of the platelet secretome in
the modulation of inflammation.

3.2.4. Liver and pancreas

The liver lobule consists of blood vessels, ducts, and
canals surrounded by sheets of hepatic cells. Generating
functional liver constructs is the first step toward the
fabrication of liver patches. Coaxial bioprinting using
hepatocytes and fibroblasts showed good cell viability
using alginate: MC supplemented with FFP. These
biomaterials lack cell binding sites and nutrients and thus
should be supplemented with blood-derived additives to
generate biologically active models. In a preliminary study,
Taymour et al.®! stressed the importance of tailoring the
microenvironment with blood additives for improved
cellular interactions and expression of hepatic marker
proteins. However, Duin et al.”"! reported no advantages
from adding blood-derived platelet lysate, FFP, or albumin
to neonatal porcine pancreatic islet-like cell clusters
encapsulated in alginate/MC in terms of cell viability or
functional reaction to glucose stimulation.

3.2.5. Neural tissues

For large nerve defects, a tissue-engineered graft (conduit)
is needed to fill the gap and guide axonal elongation
and remyelination. Autograft transplantation is the gold
standard to provide a favorable molecular environment.

Tao et al.l®® fabricated neural conduits using a digital light
processing (DLP) printer and filled the conduits with
intact platelets encapsulated within poly(ethyleneglycol)
diacrylate (PEGDA) and GelMA. This construct promoted
the sustained release of cytokines and prevented burst
release. The results showed increased thickness and
numerous layers of myelin sheath, improved axonal
elongation, and increased proliferation of Schwann
cells after implantation in a 10-mm gap in a sciatic rat
nerve model.

3.2.6. Oral tissues

The gold standard for oral tissue defects is the use
of autologous tissue grafting. However, oral mucosa
availability is limited, and morbidity at the donor site is
another drawback of the procedure. A gingival mucosa
patch was bioprinted by using alginate:gelatin combined
with PRF loaded with gingival fibroblasts. In wvitro
studies revealed high cell viability and high ECM protein
expression by encapsulated cells. Moreover, when the
constructs were implanted subcutaneously in nude mice,
they showed excellent biocompatibility and suppression of
inflammation.

Natural organs and tissues are much larger than
engineered tissues and contain a branching vascular
network that perfuses the entire organ, ensuring that all
cells are close to blood vessels with adequate nutrient and
oxygen supply. As the field of biofabrication and tissue
engineering struggles with this major limitation, advances
in the fabrication of multicellular building blocks can help
to meet the clinical demand for tissue grafts.

4. Concluding remarks

Biofabrication technologies to replace tissue sections
and activate the regenerative cascade in pathological
conditions are not yet available. The major challenges
include providing the precise molecular signals that drive
the cells to new tissue formation. Blood-derived products
provide the potential to innovate ink/bioink formulations
for enhanced construct functionalities, and it is timely to
review the status of engineered tissue constructs using
functionalized bioinks.

Bioinks can be developed by adding platelet lysates
or serum-converted platelet-rich plasma, both of which
offer a large pool of hundreds of signaling proteins for
enhanced construct functionalities. On the other hand,
plasma with scarce platelets, named PPP, and FFP are
available in larger volumes and provide bioinks with
adhesive proteins and few growth factors, providing a
complex fibrillary environment to support cell activities
under different clinical conditions. Research on
engineered tissue constructs using blood-functionalized
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bioinks has been conducted in bone, cartilage, cardiac
tissue, cornea, dermal, liver and pancreas, neural
tissues, and oral tissues. Solvent extrusion bioprinting
technologies are likely to benefit from the incorporation
of blood derivatives into bioinks. However, a deeper
understanding of the role of blood derivatives in
tissue repair and remodeling is needed to refine bioink
formulations in ways that reproduce the complex biology
and functionality of host tissues.

To fulfill as many requirements as possible with
good predictability, biomaterials can be functionalized
with tailored blood-derived products, resulting in
the transformation of inert biomaterials into reactive
(stimuli-response) biomaterials, inspired by physiological
repair mechanisms in which hemostasis (blood clot
formation, fibrin formation) is the starting point, and
platelet degranulation and secretome release trigger the
regenerative cascade.
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