(In progress)

Table of Contents

Special Section: Research and Applications of 3D Printing and Bioprinting for Covid-19







Regular Section

Original Articles

by Evangelos Daskalakis, Fengyuan Liu, Boyang Huang, Anil A. Acar, Glen Cooper, Andrew Weightman, Gordon Blunn, Bahattin Koç, Paulo Bartolo
307 Views, 56 PDF Downloads

There is a significant unmet clinical need to prevent amputations due to large bone loss injuries. We are addressing this problem by developing a novel, cost-effective osseointegrated prosthetic solution based on the use of modular pieces, bone bricks, made with biocompatible and biodegradable materials that fit together in a Lego-like way to form the prosthesis. This paper investigates the anatomical designed bone bricks with different architectures, pore size gradients, and material compositions. Polymer and polymer-composite 3D printed bone bricks are extensively morphological, mechanical, and biological characterized. Composite bone bricks were produced by mixing polycaprolactone (PCL) with different levels of hydroxyapatite (HA) and β-tri-calcium phosphate (TCP). Results allowed to establish a correlation between bone bricks
architecture and material composition and bone bricks performance. Reinforced bone bricks showed improved mechanical and biological results. Best mechanical properties were obtained with PCL/TCP bone bricks with 38 double zig-zag filaments and 14 spiral-like pattern filaments, while the best biological results were obtained with PCL/HA bone bricks based on 25 double zig-zag filaments and 14 spiral-like pattern filaments.

PDF

Original Articles

by Guowen Qian, Lemin Zhang, Guoyong Wang, Zhengyu Zhao, Shuping Peng, Cijun Shuai
288 Views, 48 PDF Downloads

Poly-L-lactic acid (PLLA) lacks osteogenic activity, which limits its application in bone repair. Zinc (Zn) is widely applied to strengthen the biological properties of polymers due to its excellent osteogenic activity. In the present study, Zn-doped mesoporous silica (Zn-MS) particles were synthesized by one-pot hydrothermal method. Then, the particles were induced into PLLA scaffolds prepared by selective laser sintering technique, aiming to improve their osteogenic activity. Our results showed that the synthesized particles possessed rosette-like morphology and uniform mesoporous structure, and the composite scaffold displayed the sustained release of Zn ion in a low concentration range, which was attributed to the shield effect of the PLLA matrix and the strong bonding interaction of Si-O-Zn. The scaffold could evidently promote osteogenesis
differentiation of mouse bone marrow mesenchymal stem cells by upregulating their osteogenesis-related gene expression. Besides, Zn-MS particles could significantly increase the compressive strength of the PLLA scaffold because of their rosettelike morphology and mesoporous structure, which can form micromechanical interlocking with the PLLA matrix. The Zn-MS particles possess great potential to improve various polymer scaffold properties due to their advantageous morphology and
physicochemical properties.

PDF

Original Articles

by Wei Long Ng, Teck Choon Ayi, Yi-Chun Liu, Swee Leong Sing, Wai Yee Yeong, Boon-Huan Tan
99 Views, 16 PDF Downloads

The global prevalence of respiratory diseases caused by infectious pathogens has resulted in an increased demand for realistic in-vitro alveolar lung models to serve as suitable disease models. This demand has resulted in the fabrication of numerous two-dimensional (2D) and three-dimensional (3D) in-vitro alveolar lung models. The ability to fabricate these 3D in-vitro alveolar lung models in an automated manner with high repeatability and reliability is important for potential scalable
production. In this study, we reported the fabrication of human triple-layered alveolar lung models comprising of human lung epithelial cells, human endothelial cells, and human lung fibroblasts using the drop-on-demand (DOD) 3D bioprinting technique. The polyvinylpyrrolidone-based bio-inks and the use of a 300 μm nozzle diameter improved the repeatability of the bioprinting process by achieving consistent cell output over time using different human alveolar lung cells. The 3D bioprinted
human triple-layered alveolar lung models were able to maintain cell viability with relative similar proliferation profile over time as compared to non-printed cells. This DOD 3D bioprinting platform offers an attractive tool for highly repeatable and scalable fabrication of 3D in-vitro human alveolar lung models.

PDF

Original Articles

by N. V. Arguchinskaya, E. E. Beketov, A. A Kisel, E. V. Isaeva, E. O. Osidak, S. P. Domogatsky, N. V. Mikhailovsky, F. E. Sevryukov, N. K. Silantyeva, T. A. Agababyan, S. A. Ivanov, P. V. Shegay, A. D. Kaprin
43 Views, 6 PDF Downloads

During biofabrication, a tissue scaffold may require temporary support. The aim of this study was to develop an approach of human thyroid cartilage scaffold temporal support formation. The scaffold 3D-model was based on DICOM images. XY plane projections were used to form scaffold supporting part. To verify the technique, collagen hydrogel was chosen as the main scaffold component. Gelatin was applied for the supporting part. To test the applicability of the approach, a model of thyroid cartilage scaffold with the support was printed. The scaffold corresponded to a given model, although some discrepancy in geometry was observed during verification by computed tomography.

PDF

Review Articles

by Natanael Parningotan Agung, Muhammad Hanif Nadhif, Gampo Alam Irdam, Chaidir Arif Mochtar
112 Views, 13 PDF Downloads

Urology is one of the fields that are always at the frontline of bringing scientific advancements into clinical practice, including 3D printing (3DP). This study aims to discuss and presents the current role of 3D-printed phantoms and devices for organ-specified applications in urology. The discussion started with a literature search regarding the two mentioned
topics within PubMed, Embase, Scopus, and EBSCOhost databases. 3D-printed urological organ phantoms are reported for providing residents new insight regarding anatomical characteristics of organs, either normal or diseased, in a tangible manner. Furthermore, 3D-printed organ phantoms also helped urologists to prepare a pre-surgical planning strategy with detailed anatomical models of the diseased organs. In some centers, 3DP technology also contributed to developing specified devices
for disease management. To date, urologists have been benefitted by 3D-printed phantoms and devices in the education and disease management of organs of in the genitourinary system, including kidney, bladder, prostate, ureter, urethra, penis, and adrenal. It is safe to say that 3DP technology can bring remarkable changes to daily urological practices.

PDF

Review Articles

by Yintao Zhang, Shokouh Attarilar, Liqiang Wang, Weijie Lu, Junlin Yang, Yuanfei Fu
12 Views, 4 PDF Downloads

NiTi alloy has a wide range of applications as a biomaterial due to its high ductility, low corrosion rate, and favorable biocompatibility. Although Young’s modulus of NiTi is relatively low, it still needs to be reduced; one of the promising ways is by introducing porous structure. Traditional manufacturing processes, such as casting, can hardly produce complex porous structures. Additive manufacturing (AM) is one of the most advanced manufacturing technologies that can solve impurity issues, and selective laser melting (SLM) is one of the well-known methods. This paper reviews the developments of AMNiTi with a particular focus on SLM-NiTi utilization in biomedical applications. Correspondingly, this paper aims to describe the three key factors, including powder preparation, processing parameters, and gas atmosphere during the overall process of porous NiTi. The porous structure design is of vital importance, so the unit cell and pore parameters are discussed. The mechanical properties of SLM-NiTi, such as hardness, compressive strength, tensile strength, fatigue behavior, and damping properties and their relationship with design parameters are summarized. In the end, it points out the current challenges. Considering the increasing application of NiTi implants, this review paper may open new frontiers for advanced and modern designs.

PDF