Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration

Weiguang Wang, Guilherme Ferreira Caetano, Wei-Hung Chiang, Ana Letícia Braz, Jonny James Blaker, Marco Andrey Cipriani Frade, Paulo Jorge Da Silva Bartolo

Article ID: 85
Vol 2, Issue 2, 2016, Article identifier:95-104

VIEWS - 4272 (Abstract) 1093 (PDF)


Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements such as mechanical properties, surface characteristics, biodegradability, biocompatibility, and porosity. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes. Polymeric scaffolds reinforced with electroactive particles could play a key role in tissue engineering by modulating cell proliferation and differentia-tion. This paper investigates the use of an extrusion additive manufacturing system to produce PCL/pristine graphene scaffolds for bone tissue applications. PCL/pristine graphene blends were prepared using a melt blending process. Scaffolds with regular and reproducible architecture were produced with different concentrations of pristine graphene. Scaffolds were evaluated from morphological, mechanical, and biological view. The results suggest that the addition of pristine graphene improves the mechanical performance of the scaffolds, reduces the hydrophobicity, and improves cell viability and proliferation.


biofabrication; human adipose-derived stem cells; poly (ε-caprolactone); pristine graphene; scaffolds; tissue engineering

Full Text:



Lee J, Farag M M, Park E K, et al., 2014, A simultaneous process of 3D magnesium phosphate scaffold fabrication and bioactive substance loading for hard tissue regeneration. Materials Science and Engineering: C, vol.36: 252–260.

Lichte P, Pape H C, Pufe T, et al., 2011, Scaffolds for bone healing: concepts, materials and evidence. Injury, vol.42(6): 569–573.

Tang D, Tare R S, Yang L Y, et al., 2016, Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials, vol.83: 363–382.

Wang W, Chiang W H and Bartolo P J, 2016, Proceedings of the 2nd International Conference on Progress in Additive Manufacturing, May 16-19, 2016: Design, fa-

brication and evaluation of PCL/graphene scaffolds for bone regeneration.

Oryan A, Alidadi S, Moshiri A, et al., 2014, Bone regenerative medicine: classic options, novel strategies, and future directions. Journal of Orthopaedic Surgery and Research, vol.9(1): 18.

Denry I and Kuhn L T, 2016, Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dental Materials, vol.32(1): 43–53.

Fiedler T, Videira A C, Bártolo P, et al., 2013, On the mechanical properties of PLC–bioactive glass scaffolds fabricated via BioExtrusion. Materials Science and Engineering: C, vol.57: 288–293.

Sousa I, Mendes A, Pereira R F, et al., 2014, Collagen surface modified poly (ε-caprolactone) scaffolds with improved hydrophilicity and cell adhesion properties. Materials Letters, vol.134: 263–267.

Santos A R C, Almeida H A and Bártolo P J, 2013, Additive manufacturing techniques for scaffold-based cartilage tissue engineering. Virtual and Physical Prototyping, vol.8(3): 175–186.

Bartolo P J, Kruth J P, Silva J, et al., 2012, Biomedical production of implants by additive electrochemical and physical processes. CIRP Annals – Manufacturing Technology, vol.61(2): 635–655.

Bártolo P J, Chua C K, Almeida H A, et al., 2009, Biomanufacturing for tissue engineering: present and future trends. Virtual and Physical Prototyping, vol.4(4): 203– 216.

Fantini M, Curto M and De Crescenzio F, 2016, A method to design biomimetic scaffolds for bone tissue engineering based on Voronoi lattices. Virtual and Physical Prototyping, vol.11(2): 1–14.

Lee J M and Yeong W Y, 2015, A preliminary model of time-pressure dispensing system for bioprinting based on printing and material parameter. Virtual and Physical Prototyping, vol.10(1): 3–8.

Dean D, Mott E, Luo X, et al., 2014, Multiple initiators and dyes for continuous digital light processing (cDLP) additive manufacture of resorbable bone tissue engineering. Virtual and Physical Prototyping, vol.9(1): 3–9.

Kumar A, Mandal S, Barui S, et al., 2016. Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Materials Science and Engineering: R: Reports, vol.103: 1–39.

Caetano G, Violante R, Sant′Ana A B, et al., 2016, Cellularized versus decellularized scaffolds for bone regeneration. Materials Letters.

Jin G and Li K, 2014, The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine. Materials Science and Engineering: C, vol.45: 671–681.

Lu L, Mende M, Yang X, et al., 2012, Design and validation of a bioreactor for simulating the cardiac niche: A system incorporating cyclic stretch, electrical stimulation, and constant perfusion. Tissue Engineering Part A, vol.19(3–4): 403–414.

Maidhof R, Tandon N, Lee E J, et al., 2012, Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. Journal of Tissue Engineering and Regenerative Medicine, vol.6(10): e12–e23.

Kuilla T, Bhadra S, Yao D, et al., 2010, Recent advances in graphene based polymer composites. Progress in Polymer Science, vol.35(11): 1350–1375.

Li M, Guo Y, Wei Y, et al., 2006, Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials, vol.27(13): 2705– 2715.

Kumar S, Azam D, Raj S, et al., 2016, 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.104(4): 732–749.

Wang J K, Xiong G M, Zhu M, et al., 2015, Polymer-enriched 3D graphene foams for biomedical applications. ACS Applied Materials and Interfaces, vol.7(15): 8275–8283.

Liao K H, Lin Y S, Macosko C W, et al., 2011, Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Applied Materials and Interfaces, vol.3(7): 2607–2615.

Wang K, Ruan J, Song H, et al., 2011, Biocompatibility of graphene oxide. Nanoscale Research Letters, vol.6(1):

Zhang Y, Ali S F, Dervishi E, et al., 2010, Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, vol.4(6): 3181–3186.

Park S Y, Park J, Sim S H, et al., 2011, Enhanced differentiation of human neural stem cells into neurons on graphene. Advanced Materials, vol.23(36): H263–H267.

Li N, Zhang X, Song Q, et al., 2011, The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials, vol.32(35): 9374–9382.

Woodruff M A and Hutmacher D W, 2010, The return of a forgotten polymer — polycaprolactone in the 21st century. Progress in Polymer Science, vol.35(10): 1217– 1256.

Sasmazel H T, 2011, Novel hybrid scaffolds for the cultivation of osteoblast cells. International Journal of Biological Macromolecules, vol.49(4): 838–846.

Caetano G F, Bártolo P J, Domingos M, et al., 2015, Osteogenic differentiation of adipose-derived mesenchymal stem cells into Polycaprolactone (PCL) scaffold. Procedia Engineering, vol.110: 59–66.

Zhang H X, Du G H and Zhang J T, 2004, Assay of mitochondrial functions by resazurin in vitro. Acta Pharmacologica Sinica, vol.25(3): 385–389.

Borra R C, Lotufo M A, Gagioti S M, et al., 2009, A simple method to measure cell viability in proliferation and cytotoxicity assays. Brazilian Oral Research, vol.23(3): 255–262.

Vega-Avila E and Pugsley M K, 2011, An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proceedings of the Western Pharmacology Society, vol.54: 10–14.

Poh P S P, Hutmacher D W, Holzapfel B M, et al., 2016, In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Acta Biomaterialia, vol.30: 319–333.

Bártolo P J, Domingos M, Patrício T, et al., 2011, Bio-fabrication strategies for tissue engineering, in Fernandes P R and Bártolo P J, (eds) Advances on Modeling in Tissue Engineering, Springer, Netherlands, 137–176.



  • There are currently no refbacks.

Copyright (c) 2017

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.