
Revealing emerging science and technology research for dentistry applications of 3D bioprinting
Abstract
Keywords
Full Text:
PDFReferences
Rodríguez-Salvador M, Rio-Belver RM, Garechana-
Anacabe G, 2017, Scientometric and patentometric analyses
to determine the knowledge landscape in innovative
technologies: The case of 3D bioprinting. PLoS One, 12(6):
e0180375. https://doi.org/10.1371/journal.pone.0180375.
Trappey A J, Trappey C V, Lee K L, 2017, Tracing the evolution
of biomedical 3d printing technology using ontology-based
patent concept analysis. Technol Anal Strateg Manag, 29: 339-
https://doi.org/10.1080/09537325.2016.1211267.
Comb J W, Priedeman W R, Turley P W, 1994, FDM technology
process improvements. Solid Free Fabr Proc, 11, 42-49.
Kruth J P, Wang X, Laoui T, et al., 2003, Lasers and materials
in selective laser sintering. Assem Autom, 23: 357-371.
https://doi.org/10.1108/01445150310698652.
Murr L E, Gaytan S M, Ramirez D A, et al., 2012, Metal
fabrication by additive manufacturing using laser and electron
beam melting technologies. J Mater Sci Technol, 28: 1-14.
https://doi.org/https://doi.org/10.1016/S1005-0302(12)60016-4.
Derby B, 2010, Inkjet printing of functional and structural
materials: Fluid property requirements, feature stability, and
resolution. Annu Rev Mater Res, 40: 395-414. https://doi.
org/10.1146/annurev-matsci-070909-104502.
Valkenaers H, Vogeler F, Ferraris E, et al., 2013, A Novel
Approach to Additive Manufacturing: Screw Extrusion
D-Printing. 10th International Conference on Multi-Material
Micro Manufacture.
Guillemot F, Souquet A, Catros S, et al., 2010, Laser-assisted
cell printing: principle, physical parameters versus cell
fate and perspectives in tissue engineering. Nanomedicine,
: 507-515. https://doi.org/10.2217/nnm.10.14.
Rengier F, Mehndiratta A, von Tengg-Kobligk H, et al.,
, 3D printing based on imaging data: Review of medical
applications. Int J Comput Assist Radiol Surg, 5: 335-41.
https://doi.org/10.1007/s11548-010-0476-x.
Murphy S V., Atala A, 2014, 3D bioprinting of tissues and organs.
Nat Biotechnol, 32(8): 773-785. https://doi: 10.1038/nbt.2958.
Tasoglu S, Demirci U, 2013, Bioprinting for stem cell
research. Trends Biotechnol, 31: 10-19. https://doi.org/
https://doi.org/10.1016/j.tibtech.2012.10.005.
Albritton J L, Miller J S, 2017, 3D bioprinting: improving
in vitro models of metastasis with heterogeneous tumor
microenvironments. Dis Model Mech, 10: 3-14. https://doi.
org/10.1242/dmm.025049.
Chang R, Nam J, Sun W, 2008, Direct cell writing of 3D
microorgan for in vitro pharmacokinetic model. Tissue Eng
Part C Methods, 14: 157-166. https://doi.org/10.1089/ten.
tec.2007.0392.
Mandrycky C, Wang Z, Kim K, et al., 2016, 3D bioprinting
for engineering complex tissues. Biotechnol Adv, 34(4): 422-
https://doi.org/10.1016/j.biotechadv.2015.12.011.
Melchels F P, Domingos M A, Klein T J, et al., 2012,
Additive manufacturing of tissues and organs. Prog Polym
Sci, 37: 1079-1104. https://doi.org/https://doi.org/10.1016/j.
progpolymsci.2011.11.007.
Wilson W C, Boland T, 2003, Cell and organ printing 1:
Protein and cell printers. Anat Rec Part A, 272A(2): 491-496.
https://doi:10.1002/ar.a.10057.
Ingber D E, Mow V C, Butler D, et al., 2006, Tissue
engineering and developmental biology: Going biomimetic.
Tissue Eng, 12: 3265-3283. https://doi.org/10.1089/
ten.2006.12.3265.
Shu A F, 2015, Bioprinting of human pluripotent stem cells
and their directed differentiation into hepatocyte-like cells for
the generation of mini-livers in 3D. Biofabrication, 7: 44102.
Seol Y J, Kang H W, Lee S J, et al., 2014, Bioprinting
technology and its applications. Eur J Cardio Thoracic
Surgm, 46: 342-348.
Derby B, 2008, Bioprinting: Inkjet printing proteins and
hybrid cell-containing materials and structures. J Mater
Chem, 18: 5717-5721. https://doi.org/10.1039/B807560C.
Cui X, Boland T, 2009, Human microvasculature
fabrication using thermal inkjet printing technology.
Biomaterials, 30: 6221-6227. https://doi.org/10.1016/j.
biomaterials.2009.07.056.
Ringeisen B R, Kim H, Barron JA, et al., 2004, Laser printing
of pluripotent embryonal carcinoma cells. Tissue Eng,
: 483-491. https://doi.org/10.1089/107632704323061843.
Fedorovich N E, Alblas J, de Wijn J R, et al., 2007, Hydrogels
as extracellular matrices for skeletal tissue engineering: Stateof-
the-art and novel application in organ printing. Tissue Eng,
: 1905-1925. https://doi.org/10.1089/ten.2006.0175.
Malda J, Visser J, Melchels F P, et al., 2013, 25th anniversary
article: Engineering hydrogels for biofabrication. Adv Mater,
: 5011-5028. https://doi.org/10.1002/adma.201302042.
Domingos M, Dinucci D, Cometa S, et al., 2009,
Polycaprolactone scaffolds fabricated via bioextrusion for
tissue engineering applications. Int J Biomater, 2009: 9.
https://doi.org/10.1155/2009/239643.
Rutz A L, Hyland K E, Jakus A E, et al., 2015, A
multimaterial bioink method for 3D printing tunable, cellcompatible
hydrogels. Adv Mater, 27: 1607-1614. https://doi.
org/10.1002/adma.201405076.
Kirchmajer D M, Gorkin I I, Panhuis M, 2015, An overview
of the suitability of hydrogel-forming polymers for extrusionbased
D-printing. J Mater Chem B, 3: 4105-4117. https://
doi.org/10.1039/C5TB00393H.
Drury J L, Mooney D J, 2003, Hydrogels for tissue
engineering: Scaffold design variables and applications.
Biomaterials, 24: 4337-4351. https://doi.org/10.1016/S0142-
(03)00340-5.
Chimene D, Lennox K K, Kaunas R R, et al., 2016,
Advanced bioinks for 3D printing: A materials
science perspective. Ann Biomed Eng, 44: 2090-2102.
https://doi.org/10.1007/s10439-016-1638-y.
Sears N A, Seshadri D R, Dhavalikar P S, et al., 2016, A
review of three-dimensional printing in tissue engineering.
Tissue Eng Part B Rev, 22: 298-310. https://doi.org/10.1089/
ten.teb.2015.0464.
Do A V, Khorsand B, Geary SM, et al., 2015, 3D printing of
scaffolds for tissue regeneration applications. Adv Healthc
Mater, 4: 1742-1762. https://doi.org/10.1002/adhm.201500168.
Sharma S, Srivastava D, Grover S, et al., 2014, Biomaterials in tooth tissue engineering: A review. J Clin Diagn Res,
: 309-315. https://doi.org/10.7860/JCDR/2014/7609.3937.
Asaad F, Pagni G, Pilipchuk S P, et al., 2016, 3D-printed
scaffolds and biomaterials: Review of alveolar bone
augmentation and periodontal regeneration applications. Int. J.
Dent, 2016: 15. 10.1155/2016/1239842.
Rasperini G, Pilipchuk S P, Flanagan C L, et al., 2015,
D-printed bioresorbable scaffold for periodontal
repair. J Dent Res, 94: 153S-157S. https://doi.
org/10.1177/0022034515588303.
Costa P F, Vaquette C, Zhang Q, et al., 2013, Advanced tissue
engineering scaffold design for regeneration of the complex
hierarchical periodontal structure. J Clin Periodontol,
: 283-294. https://doi.org/10.1111/jcpe.12214.
Lee C H, Hajibandeh J, Suzuki T, et al., 2014, Threedimensional
printed multiphase scaffolds for regeneration of
periodontium complex. Tissue Eng Part A, 20: 1342-1351.
https://doi.org/10.1089/ten.tea.2013.0386.
Ma Y, Ji Y, Huang G, et al., 2015, Bioprinting 3D cell-laden
hydrogel microarray for screening human periodontal
ligament stem cell response to extracellular matrix Bioprinting
D cell-laden hydrogel microarray for screening human
periodontal ligament stem cell response to extracellular ma.
Biofabrication, 7: 044105.
Kim S, Chang N, Park S, 2018, In vivo evaluation of 3D-printed
polycaprolactone scaffold implantation combined with β -TCP
powder for alveolar bone augmentation in a beagle defect
model. Materials, 11: 2. https://doi.org/10.3390/ma11020238.
Bencherif S A, Braschler T M, Renaud P, 2013, Advances in
the design of macroporous polymer scaffolds for potential
applications in dentistry. J Periodontal Implant Sci, 43: 251-
https://doi.org/10.5051/jpis.2013.43.6.251.
DOI: http://dx.doi.org/10.18063/ijb.v5i1.170
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Marisela Rodriguez-Salvador, Laura Ruiz-Cantu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.