3D bioprinting processes: A perspective on classification and terminology
Vol 4, Issue 2, 2018, Article identifier:151
VIEWS - 4114 (Abstract) 739 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
Groll J, Boland T, Blunk T, et al., 2016, Biofabrication: Reappraising the definition of an evolving field. Biofabrication, 8(1): 013001. http://dx.doi.org/10.1088/1758 5090/8/1/013001
Moroni L, Boland T, Burdick J A, et al., 2017, Biofabrication: A guide to technology and terminology. Trends Biotechnol, 36(4): 384–402. http://dx.doi.org/10.1016/j.tibtech.2017.10.0153.
Murphy S V, Atala A, 2014, 3D bioprinting of tissues and organs. Nat Biotechnol, 2014. 32(8): 773–785. http://dx.doi.org/10.1038/nbt.2958
Mandrycky C, Wang C, Kim K, et al., 2016, 3D bioprinting for engineering complex tissues. Biotechnol Adv, 34(4): 422–434. http://dx.doi.org/10.1016/j.biotechadv.2015.12.011
Zhang Y S, Yue K, Aleman J, et al., 2017, 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng, 45(1): 148–163. http://dx.doi.org/10.1007/s10439-016-1612-8
Suntornnond R, An J, Chua C K, 2017, Bioprinting of thermoresponsive hydrogels for next generation tissue engineering: A review. Macromol Mater Eng, 302: 1600266. http://dx.doi.org/10.1002/mame.201600266
Gudapati H, Dey M, Ozbolat I, 2016, A comprehensive review on droplet-based bioprinting: Past, present and future. Biomaterials, 102: 20–42. http://dx.doi.org/10.1016/j.biomaterials.2016.06.012
Vijayavenkataraman S, Lu W F, Fuh J Y, 2016, 3D bioprinting of skin: A state-of-the-art review on modelling, materials, and processes. Biofabrication, 8(3): 032001. http://dx.doi.org/10.1088/1758-5090/8/3/032001
Boland T, Ovslanikov A, Chickov B N, et al., 2007, Rapid prototyping of artificial tissues and medical devices. Adv Mater Process, 165(4): 51–53.
Yap Y L, Wang C C, Sing S L, et al., 2017, Material jetting additive manufacturing: An experimental study using designed metrological benchmarks. Precis Eng, 50: 275–285. http://dx.doi.org/10.1016/j.precisioneng.2017.05.015
Derby B, 2018, Bioprinting: Inkjet printing proteins and hybrid cell-containing materials and structures. J Mater Chem, 18(47): 5717. http://dx.doi.org/10.1039/B807560C
Fang Y, Frampton J P, S Raghavan S, et al., 2012, Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng Part C Methods, 18(9): 647–657. http://dx.doi.org/10.1089/ten.tec.2011.0709
Eagles P A , Qureshi A N, Jayasinghe S N, 2006, Electrohydrodynamic jetting of mouse neuronal cells. Biochem J, 394(Pt 2): 375–378. http://dx.doi.org/10.1042/BJ20051838
Jayasinghe S N, Qureshi A, Eagles P A, 2006, Electrohydrodynamic jet processing: An advanced electric-field-driven jetting phenomenon for processing living cells. Small, 2(2): 216–219. http://dx.doi.org/10.1002/smll.200500291
Abeyewickreme A, Kwok A, Mcewan J R, et al., 2009, Bio-electrospraying embryonic stem cells: Interrogating cellular viability and pluripotency. Integr Biol (Camb), 2009. 1(3): 260–266. http://dx.doi.org/10.1039/b819889f
Guillemot F, Guillotin B, Fontaine A, et al., 2011, Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine. Mrs Bulletin, 36(12): 1015–1019. http://dx.doi.org/10.1557/mrs.2011.272
Gaebel, R, Ma N, Liu J, et al., 2011, Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials, 32(35): 9218–9230. http://dx.doi.org/10.1016/j.biomaterials.2011.08.071
Xu C, 2014, Freeform vertical and horizontal fabrication of alginate-based vascular-like tubular constructs using inkjetting. Journal of Manufacturing Science and Engineering, 136(6): 061020. http://dx.doi.org/10.1115/1.4028578
Xu C, Zhang M, Huang Y, et al., 2014, Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink. Langmuir, 30(30): 9130–9138. http://dx.doi.org/10.1021/la501430x
De Coppi P, Bartsch G, Siddiquiet M M, et al., 2007, Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol, 25(1): 100. http://dx.doi.org/10.1038/nbt1274
Michael S, Sorg H, Pecket C T, et al., 2013, Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PloS One, 8(3): e57741. 10.1371/journal.pone.0057741
Demirci U, Montesano G, 2007, Single cell epitaxy by acoustic picolitre droplets. Lab Chip, 7(9): 1139–1145. http://dx.doi.org/10.1039/b704965j
Cui H, Nowicki M, Fisher J P, et al., 2017, 3D bioprinting for organ regeneration. Adv Healthc Mater, 6(1): 1601118. http://dx.doi.org/10.1002/adhm.201601118
Guillotin B, Souquet A S, Duocastella M, et al., 2010, Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 2010. 31(28): 7250–7256. http://dx.doi.org/10.1016/j.biomaterials.2010.05.055
Murphy S V, Atala A, 2014, 3D bioprinting of tissues and organs. Nat Biotechnol, 32(8): 773. http://dx.doi.org/10.1038/nbt.2958
Tan E Y S, Yeong W Y, 2015, Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique. International Journal of Bioprinting,1(1): 49–56.
Agarwala S, Lee J M, Ng W L, et al., 2018, A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform. Biosens Bioelectron, 102: 365–371. http://dx.doi.org/10.1016/j.bios.2017.11.039
Lee J M, Sing S L, Tan E Y S, et al., 2016, Bioprinting in cardiovascular tissue engineering: A review. International Journal of Bioprinting, 2(2): 27–36.
Ahn S, Lee H, Kim G, 2013, Functional cell-laden alginate scaffolds consisting of core/shell struts for tissue regeneration. Carbohydr Polym, 98(1): 936–942. http://dx.doi.org/10.1016/j.carbpol.2013.07.008
Billiet T, Gevaert E, Schryver T D, et al., 2014, The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 35(1): 49–62. http://dx.doi.org/10.1016/j.biomaterials.2013.09.078.
Duan B, Hockaday L A, Kang K H, et al., 2013, 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A, 101(5): 1255–1264. http://dx.doi.org/10.1002/jbm.a.34420.
Fedorovich N E, Wijnberg H M, Dhert W J, et al., 2011, Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng Part A, 17(15–16): 2113–2121. http://dx.doi.org/10.1089/ten.TEA.2011.0019
Huang Y, He K, Wang X, 2013, Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine. Mater Sci Eng C Mater Biol Appl, 33(6): 3220–3229. http://dx.doi.org/10.1016/j.msec.2013.03.048
Lee H, Ahn S H, Bonassar L J, et al., 2013, Cell-laden poly(varepsilon caprolactone)/alginate hybrid scaffolds fabricated by an aerosol cross-linking process for obtaining homogeneous cell distribution: Fabrication, seeding efficiency, and cell proliferation and distribution. Tissue Eng Part C Methods, 19(10): 784–793. http://dx.doi.org/10.1089/ten.TEC.2012.0651
Ozbolat I T, Chen H, Yu Y, 2014, Development of ‘Multi-arm Bioprinter’ for hybrid biofabrication of tissue engineering constructs. Robot Comput Integr Manuf, 30(3): 295–304. http://dx.doi.org/10.1016/j.rcim.2013.10.005
Shim, J H, Lee J S, Kim J Y, et al., 2012, Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng, 22(8): 085014. http://dx.doi.org/10.1088/0960-1317/22/8/085014
Snyder J E, Hamid Q, Wang C, et al., 2011, Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication, 3(3): 034112. http://dx.doi.org/10.1088/1758-5082/3/3/034112
Wang X H, Yan Y Y, Xiong Z, et al., 2006, Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng, 12(1): 83–90. http://dx.doi.org/10.1089/ten.2006.12.83
Skardal A, Zhang J, Prestwich G D, 2010, Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31(24): 6173–6181. http://dx.doi.org/10.1016/j.biomaterials.2010.04.045
Visser J, Peters B, Burger T J, et al., 2013, Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication, 5(3): 035007. http://dx.doi.org/10.1088/1758-5082/5/3/035007
Lee W, Lee V K, Polio S, et al., 2009, Three-dimensional cell-hydrogel printer using electromechanical microvalve for tissue engineering. in Solid-state sensors, actuators and microsystems conference. TRANSDUCERS 2009. http://dx.doi.org/10.1109/SENSOR.2009.5285591
Shi P, Tan E Y S, Yeong W Y, et al., 2018, A bilayer photoreceptor-retinal tissue model with gradient cell density design: A study of microvalve-based bioprinting. J Tissue Eng Regen Med, 12(5): 1297–1306. http://dx.doi.org/10.1002/term.2661
Ng W L, Tan J Q J, Yeong W Y, et al., 2018, Proof-of-concept: 3D bioprinting of pigmented human skin constructs. Biofabrication, 10(2): 025005. http://dx.doi.org/10.1088/1758-5090/aa9e1e
Liliang O, Yao R, Zhao Y, et al., 2016, Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication, 8(3): 035020. http://dx.doi.org/10.1088/1758-5090/8/3/035020
Lee H, Ahn S H, Bonassar L J, et al., 2013, Cell-laden poly(varepsilon-caprolactone)/alginate hybrid scaffolds fabricated by an aerosol cross-linking process for obtaining homogeneous cell distribution: Fabrication, seeding efficiency, and cell proliferation and distribution. Tissue Eng Part C Methods, 19(10): 784–793. http://dx.doi.org/10.1089/ten.TEC.2012.0651
Schuurman W, Khristov V, Pot M W, et al., 2011, Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication, 3(2): 021001. http://dx.doi.org/10.1088/1758-5082/3/2/021001
Shim J H, Kim J Y, Park M, et al., 2011, Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication, 3(3): 034102. http://dx.doi.org/10.1088/1758-5082/3/3/034102
Xu T, W Zhao W, Zhu J M, et al., 2013, Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials, 2013. 34(1): 130–139. http://dx.doi.org/10.1016/j.biomaterials.2012.09.035
Shim J H, Lee J S, Kim J Y, et al., 2012, Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng, 22(8): 085014. http://dx.doi.org/10.1088/0960-1317/22/8/085014
Pati F, J Jang J, Ha D H, et al., 2014, Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun, 5: 3935. http://dx.doi.org/10.1038/ncomms4935
Kang H W, Lee S J, Ko I K, et al., 2016, A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol, 34(3): 312–319. http://dx.doi.org/10.1038/nbt.3413
Webb B, Doyle B J, 2017, Parameter optimization for 3D bioprinting of hydrogels. Bioprinting, 8: 8–12. http://dx.doi.org/10.1016/j.bprint.2017.09.001
Lee J M, Yeong W Y, 2015, A preliminary model of time-pressure dispensing system for bioprinting based on printing and material parameters. Virtual Phys Prototyp, 10(1): 3–8. http://dx.doi.org/10.1080/17452759.2014.979557
Ozbolat I T, Chen H, Yu Y, 2014, Development of ‘Multi-arm Bioprinter’ for hybridbiofabrication of tissue engineering constructs. Robot Comput Integr Manuf, 30(3): 295–304. http://dx.doi.org/10.1016/j.rcim.2013.10.005
Ahn S, Lee H, Kim G, 2013, Functional cell-laden alginate scaffolds consisting of core/shell struts for tissue regeneration. Carbohydr Polym, 98(1): 936–942. http://dx.doi.org/10.1016/j.carbpol.2013.07.008
Huang Y, He K, Wang X, 2013, Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine. Mater Sci Eng C Mater Biol Appl, 33(6): 3220–3229. http://dx.doi.org/10.1016/j.msec.2013.03.048
Duan B, Hockaday L A, Kang K H, et al., 2013, 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A, 101(5): 1255–1264. http://dx.doi.org/10.1002/jbm.a.34420
Fedorovich N E, Wijnberg H M, Dhert W J, et al., 2011, Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng Part A, 17(15–16): 2113–2121. http://dx.doi.org/10.1089/ten.TEA.2011.0019
Wang X H, Yan Y Y, Xiong Z, et al., 2006, Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng, 12(1): 83–90. http://dx.doi.org/10.1089/ten.2006.12.83
Soman P, Chung P H, Zhang A P, et al., 2013, Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng, 110(11): 3038–3047. http://dx.doi.org/10.1002/bit.24957
Zhu W, Qu X, Zhu J, et al., 2017, Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials, 124: 106–115. http://dx.doi.org/10.1016/j.biomaterials.2017.01.042
Gauvin R, Chen Y C, Jin W L, et al., 2012, Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 33(15): 3824–3834. http://dx.doi.org/10.1016/j.biomaterials.2012.01.048
Zongjie W, Abdulla R, Parker B, et al., 2015, A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication, 7(4): 045009. http://dx.doi.org/10.1088/1758-5090/7/4/045009
Shanjani Y, Pan C C, Elomaa L, et al., 2015, A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication, 7(4): 045008. http://dx.doi.org/10.1088/1758-5090/7/4/045008
Yu S L, Lee S K, 2017, Ultraviolet radiation: DNA damage, repair, and human disorders. Mol Cell Toxicol, 13(1): 21–28. http://dx.doi.org/10.1007/s13273-017-0002-0
de Gruijil F R, v. Kranen H J, Mullenders L H F, 2001, UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem Photobiol B, 63(1–3): 19–27.
Ma X, Qu X, Zhu W, et al., 2016, Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A, 113(8): 2206–2211. http://dx.doi.org/10.1073/pnas.1524510113
Odde D J, Renn M J, 1999, Laser-guided direct writing for applications in biotechnology. Trends Biotechnol, 17(10): 385–389.
Mironov V, Khesuani Y D, Bulanova E A, et al., 2016, Patterning of tissue spheroids biofabricated from human fibroblasts on the surface of electrospun polyurethane matrix using 3D bioprinter. Observationum Medicarum, 2(1): 8. http://dx.doi.org/10.18063/IJB.2016.01.007
Norotte C, Marga F S, Niklason L E, et al., 2009, Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 30(30): 5910–5917. http://dx.doi.org/10.1016/j.biomaterials.2009.06.034
Ludwig G, Kartmann S, Troendle K, et al., 2017, Large scale production and controlled deposition of single HUVEC spheroids for bioprinting applications. Biofabrication, 9(2): 025027. http://dx.doi.org/10.1088/1758-5090/aa7218
Blakely A M, Manning K L, Tripathi A, et al., 2015, Bio-pick, place, and perfuse: A new instrument for three-dimensional tissue engineering. Tissue Eng Part C Methods,21(7): 737–746. http://dx.doi.org/10.1089/ten.TEC.2014.0439
Itoh M, K Nakayama K, Noguchi R, et al., 2015, Scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLOS ONE, 10(9): e0136681. http://dx.doi.org/10.1371/journal.pone.0145971
Ong C S, Fukunishi T, Zhang H, et al., 2017, Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci Rep, 7(1): 4566. http://dx.doi.org/10.1038/s41598-017-05018-4
Blanche C I, Cui F, Tripathi A, et al., 2016, The bio-gripper: A fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing. Biofabrication, 8(2): 025015. http://dx.doi.org/10.1088/1758-5090/8/2/025015
Fattah A R A, Meleca E, Mishriki S, et al., 2016, In situ 3D label-free contactless bioprinting of cells through diamagnetophoresis. ACS Biomater Sci Eng, 2(12): 2133–2138. http://dx.doi.org/10.1021/acsbiomaterials.6b00614
Souza G, Tseng H, Gage J A, et al., 2017, Magnetically bioprinted human myometrial 3D cell rings as a model for uterine contractility. Int J Mol Sci, 18(4): 683. http://dx.doi.org/10.3390/ijms18040683
Tseng H, Gage J A, Haisler W L, et al., 2016, A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting. Sci Rep, 6: 30640. 10.1038/srep30640
Whatley B R, Li X, Zhang N, et al., 2014, Magnetic-directed patterning of cell spheroids. J Biomed Mater Res A, 102(5): 1537–1547. http://dx.doi.org/10.1002/jbm.a.34797
Goh G D, Dikshit V, Nagalingam A P, et al., 2018, Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Mater Design, 137: 79–89. http://dx.doi.org/10.1016/j.matdes.2017.10.021
DOI: http://dx.doi.org/10.18063/ijb.v4i2.151
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Jia Min Lee, Swee Leong Sing, Miaomiao Zhou, Wai Yee Yeong

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.