Open Journal Systems





3D bioprinting processes: A perspective on classification and terminology

VIEWS - 2219 (Abstract) 206 (PDF)
Jia Min Lee, Swee Leong Sing, Miaomiao Zhou, Wai Yee Yeong

Abstract


This article aims to provide further classification of cell-compatible bioprinting processes and examine the concept of 3D bioprinting within the general technology field of 3D printing. These technologies are categorized into four distinct process categories, namely material jetting, vat photopolymerization, material extrusion and free-form spatial printing. Discussion will be presented on the definition of classification with example of techniques grouped under the same category. The objective of this article is to establish a basic framework for standardization of process terminology in order to accelerate the implementation of bioprinting technologies in research and commercial landscape.

Keywords


additive manufacturing; 3D bioprinting; material jetting; material extrusion; vat photopolymerization; bioassembly

Full Text:

PDF

References


Groll J, Boland T, Blunk T, et al., 2016, Biofabrication: Reappraising the definition of an evolving field. Biofabrication, 8(1): 013001. http://dx.doi.org/10.1088/1758 5090/8/1/013001

Moroni L, Boland T, Burdick J A, et al., 2017, Biofabrication: A guide to technology and terminology. Trends Biotechnol, 36(4): 384–402. http://dx.doi.org/10.1016/j.tibtech.2017.10.0153.

Murphy S V, Atala A, 2014, 3D bioprinting of tissues and organs. Nat Biotechnol, 2014. 32(8): 773–785. http://dx.doi.org/10.1038/nbt.2958

Mandrycky C, Wang C, Kim K, et al., 2016, 3D bioprinting for engineering complex tissues. Biotechnol Adv, 34(4): 422–434. http://dx.doi.org/10.1016/j.biotechadv.2015.12.011

Zhang Y S, Yue K, Aleman J, et al., 2017, 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng, 45(1): 148–163. http://dx.doi.org/10.1007/s10439-016-1612-8

Suntornnond R, An J, Chua C K, 2017, Bioprinting of thermoresponsive hydrogels for next generation tissue engineering: A review. Macromol Mater Eng, 302: 1600266. http://dx.doi.org/10.1002/mame.201600266

Gudapati H, Dey M, Ozbolat I, 2016, A comprehensive review on droplet-based bioprinting: Past, present and future. Biomaterials, 102: 20–42. http://dx.doi.org/10.1016/j.biomaterials.2016.06.012

Vijayavenkataraman S, Lu W F, Fuh J Y, 2016, 3D bioprinting of skin: A state-of-the-art review on modelling, materials, and processes. Biofabrication, 8(3): 032001. http://dx.doi.org/10.1088/1758-5090/8/3/032001

Boland T, Ovslanikov A, Chickov B N, et al., 2007, Rapid prototyping of artificial tissues and medical devices. Adv Mater Process, 165(4): 51–53.

Yap Y L, Wang C C, Sing S L, et al., 2017, Material jetting additive manufacturing: An experimental study using designed metrological benchmarks. Precis Eng, 50: 275–285. http://dx.doi.org/10.1016/j.precisioneng.2017.05.015

Derby B, 2018, Bioprinting: Inkjet printing proteins and hybrid cell-containing materials and structures. J Mater Chem, 18(47): 5717. http://dx.doi.org/10.1039/B807560C

Fang Y, Frampton J P, S Raghavan S, et al., 2012, Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng Part C Methods, 18(9): 647–657. http://dx.doi.org/10.1089/ten.tec.2011.0709

Eagles P A , Qureshi A N, Jayasinghe S N, 2006, Electrohydrodynamic jetting of mouse neuronal cells. Biochem J, 394(Pt 2): 375–378. http://dx.doi.org/10.1042/BJ20051838

Jayasinghe S N, Qureshi A, Eagles P A, 2006, Electrohydrodynamic jet processing: An advanced electric-field-driven jetting phenomenon for processing living cells. Small, 2(2): 216–219. http://dx.doi.org/10.1002/smll.200500291

Abeyewickreme A, Kwok A, Mcewan J R, et al., 2009, Bio-electrospraying embryonic stem cells: Interrogating cellular viability and pluripotency. Integr Biol (Camb), 2009. 1(3): 260–266. http://dx.doi.org/10.1039/b819889f

Guillemot F, Guillotin B, Fontaine A, et al., 2011, Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine. Mrs Bulletin, 36(12): 1015–1019. http://dx.doi.org/10.1557/mrs.2011.272

Gaebel, R, Ma N, Liu J, et al., 2011, Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials, 32(35): 9218–9230. http://dx.doi.org/10.1016/j.biomaterials.2011.08.071

Xu C, 2014, Freeform vertical and horizontal fabrication of alginate-based vascular-like tubular constructs using inkjetting. Journal of Manufacturing Science and Engineering, 136(6): 061020. http://dx.doi.org/10.1115/1.4028578

Xu C, Zhang M, Huang Y, et al., 2014, Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink. Langmuir, 30(30): 9130–9138. http://dx.doi.org/10.1021/la501430x

De Coppi P, Bartsch G, Siddiquiet M M, et al., 2007, Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol, 25(1): 100. http://dx.doi.org/10.1038/nbt1274

Michael S, Sorg H, Pecket C T, et al., 2013, Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PloS One, 8(3): e57741. 10.1371/journal.pone.0057741

Demirci U, Montesano G, 2007, Single cell epitaxy by acoustic picolitre droplets. Lab Chip, 7(9): 1139–1145. http://dx.doi.org/10.1039/b704965j

Cui H, Nowicki M, Fisher J P, et al., 2017, 3D bioprinting for organ regeneration. Adv Healthc Mater, 6(1): 1601118. http://dx.doi.org/10.1002/adhm.201601118

Guillotin B, Souquet A S, Duocastella M, et al., 2010, Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 2010. 31(28): 7250–7256. http://dx.doi.org/10.1016/j.biomaterials.2010.05.055

Murphy S V, Atala A, 2014, 3D bioprinting of tissues and organs. Nat Biotechnol, 32(8): 773. http://dx.doi.org/10.1038/nbt.2958

Tan E Y S, Yeong W Y, 2015, Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique. International Journal of Bioprinting,1(1): 49–56.

Agarwala S, Lee J M, Ng W L, et al., 2018, A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform. Biosens Bioelectron, 102: 365–371. http://dx.doi.org/10.1016/j.bios.2017.11.039

Lee J M, Sing S L, Tan E Y S, et al., 2016, Bioprinting in cardiovascular tissue engineering: A review. International Journal of Bioprinting, 2(2): 27–36.

Ahn S, Lee H, Kim G, 2013, Functional cell-laden alginate scaffolds consisting of core/shell struts for tissue regeneration. Carbohydr Polym, 98(1): 936–942. http://dx.doi.org/10.1016/j.carbpol.2013.07.008

Billiet T, Gevaert E, Schryver T D, et al., 2014, The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 35(1): 49–62. http://dx.doi.org/10.1016/j.biomaterials.2013.09.078.

Duan B, Hockaday L A, Kang K H, et al., 2013, 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A, 101(5): 1255–1264. http://dx.doi.org/10.1002/jbm.a.34420.

Fedorovich N E, Wijnberg H M, Dhert W J, et al., 2011, Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng Part A, 17(15–16): 2113–2121. http://dx.doi.org/10.1089/ten.TEA.2011.0019

Huang Y, He K, Wang X, 2013, Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine. Mater Sci Eng C Mater Biol Appl, 33(6): 3220–3229. http://dx.doi.org/10.1016/j.msec.2013.03.048

Lee H, Ahn S H, Bonassar L J, et al., 2013, Cell-laden poly(varepsilon caprolactone)/alginate hybrid scaffolds fabricated by an aerosol cross-linking process for obtaining homogeneous cell distribution: Fabrication, seeding efficiency, and cell proliferation and distribution. Tissue Eng Part C Methods, 19(10): 784–793. http://dx.doi.org/10.1089/ten.TEC.2012.0651

Ozbolat I T, Chen H, Yu Y, 2014, Development of ‘Multi-arm Bioprinter’ for hybrid biofabrication of tissue engineering constructs. Robot Comput Integr Manuf, 30(3): 295–304. http://dx.doi.org/10.1016/j.rcim.2013.10.005

Shim, J H, Lee J S, Kim J Y, et al., 2012, Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng, 22(8): 085014. http://dx.doi.org/10.1088/0960-1317/22/8/085014

Snyder J E, Hamid Q, Wang C, et al., 2011, Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication, 3(3): 034112. http://dx.doi.org/10.1088/1758-5082/3/3/034112

Wang X H, Yan Y Y, Xiong Z, et al., 2006, Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng, 12(1): 83–90. http://dx.doi.org/10.1089/ten.2006.12.83

Skardal A, Zhang J, Prestwich G D, 2010, Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31(24): 6173–6181. http://dx.doi.org/10.1016/j.biomaterials.2010.04.045

Visser J, Peters B, Burger T J, et al., 2013, Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication, 5(3): 035007. http://dx.doi.org/10.1088/1758-5082/5/3/035007

Lee W, Lee V K, Polio S, et al., 2009, Three-dimensional cell-hydrogel printer using electromechanical microvalve for tissue engineering. in Solid-state sensors, actuators and microsystems conference. TRANSDUCERS 2009. http://dx.doi.org/10.1109/SENSOR.2009.5285591

Shi P, Tan E Y S, Yeong W Y, et al., 2018, A bilayer photoreceptor-retinal tissue model with gradient cell density design: A study of microvalve-based bioprinting. J Tissue Eng Regen Med, 12(5): 1297–1306. http://dx.doi.org/10.1002/term.2661

Ng W L, Tan J Q J, Yeong W Y, et al., 2018, Proof-of-concept: 3D bioprinting of pigmented human skin constructs. Biofabrication, 10(2): 025005. http://dx.doi.org/10.1088/1758-5090/aa9e1e

Liliang O, Yao R, Zhao Y, et al., 2016, Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication, 8(3): 035020. http://dx.doi.org/10.1088/1758-5090/8/3/035020

Lee H, Ahn S H, Bonassar L J, et al., 2013, Cell-laden poly(varepsilon-caprolactone)/alginate hybrid scaffolds fabricated by an aerosol cross-linking process for obtaining homogeneous cell distribution: Fabrication, seeding efficiency, and cell proliferation and distribution. Tissue Eng Part C Methods, 19(10): 784–793. http://dx.doi.org/10.1089/ten.TEC.2012.0651

Schuurman W, Khristov V, Pot M W, et al., 2011, Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication, 3(2): 021001. http://dx.doi.org/10.1088/1758-5082/3/2/021001

Shim J H, Kim J Y, Park M, et al., 2011, Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication, 3(3): 034102. http://dx.doi.org/10.1088/1758-5082/3/3/034102

Xu T, W Zhao W, Zhu J M, et al., 2013, Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials, 2013. 34(1): 130–139. http://dx.doi.org/10.1016/j.biomaterials.2012.09.035

Shim J H, Lee J S, Kim J Y, et al., 2012, Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng, 22(8): 085014. http://dx.doi.org/10.1088/0960-1317/22/8/085014

Pati F, J Jang J, Ha D H, et al., 2014, Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun, 5: 3935. http://dx.doi.org/10.1038/ncomms4935

Kang H W, Lee S J, Ko I K, et al., 2016, A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol, 34(3): 312–319. http://dx.doi.org/10.1038/nbt.3413

Webb B, Doyle B J, 2017, Parameter optimization for 3D bioprinting of hydrogels. Bioprinting, 8: 8–12. http://dx.doi.org/10.1016/j.bprint.2017.09.001

Lee J M, Yeong W Y, 2015, A preliminary model of time-pressure dispensing system for bioprinting based on printing and material parameters. Virtual Phys Prototyp, 10(1): 3–8. http://dx.doi.org/10.1080/17452759.2014.979557

Ozbolat I T, Chen H, Yu Y, 2014, Development of ‘Multi-arm Bioprinter’ for hybridbiofabrication of tissue engineering constructs. Robot Comput Integr Manuf, 30(3): 295–304. http://dx.doi.org/10.1016/j.rcim.2013.10.005

Ahn S, Lee H, Kim G, 2013, Functional cell-laden alginate scaffolds consisting of core/shell struts for tissue regeneration. Carbohydr Polym, 98(1): 936–942. http://dx.doi.org/10.1016/j.carbpol.2013.07.008

Huang Y, He K, Wang X, 2013, Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine. Mater Sci Eng C Mater Biol Appl, 33(6): 3220–3229. http://dx.doi.org/10.1016/j.msec.2013.03.048

Duan B, Hockaday L A, Kang K H, et al., 2013, 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A, 101(5): 1255–1264. http://dx.doi.org/10.1002/jbm.a.34420

Fedorovich N E, Wijnberg H M, Dhert W J, et al., 2011, Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng Part A, 17(15–16): 2113–2121. http://dx.doi.org/10.1089/ten.TEA.2011.0019

Wang X H, Yan Y Y, Xiong Z, et al., 2006, Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng, 12(1): 83–90. http://dx.doi.org/10.1089/ten.2006.12.83

Soman P, Chung P H, Zhang A P, et al., 2013, Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng, 110(11): 3038–3047. http://dx.doi.org/10.1002/bit.24957

Zhu W, Qu X, Zhu J, et al., 2017, Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials, 124: 106–115. http://dx.doi.org/10.1016/j.biomaterials.2017.01.042

Gauvin R, Chen Y C, Jin W L, et al., 2012, Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 33(15): 3824–3834. http://dx.doi.org/10.1016/j.biomaterials.2012.01.048

Zongjie W, Abdulla R, Parker B, et al., 2015, A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication, 7(4): 045009. http://dx.doi.org/10.1088/1758-5090/7/4/045009

Shanjani Y, Pan C C, Elomaa L, et al., 2015, A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication, 7(4): 045008. http://dx.doi.org/10.1088/1758-5090/7/4/045008

Yu S L, Lee S K, 2017, Ultraviolet radiation: DNA damage, repair, and human disorders. Mol Cell Toxicol, 13(1): 21–28. http://dx.doi.org/10.1007/s13273-017-0002-0

de Gruijil F R, v. Kranen H J, Mullenders L H F, 2001, UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem Photobiol B, 63(1–3): 19–27.

Ma X, Qu X, Zhu W, et al., 2016, Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A, 113(8): 2206–2211. http://dx.doi.org/10.1073/pnas.1524510113

Odde D J, Renn M J, 1999, Laser-guided direct writing for applications in biotechnology. Trends Biotechnol, 17(10): 385–389.

Mironov V, Khesuani Y D, Bulanova E A, et al., 2016, Patterning of tissue spheroids biofabricated from human fibroblasts on the surface of electrospun polyurethane matrix using 3D bioprinter. Observationum Medicarum, 2(1): 8. http://dx.doi.org/10.18063/IJB.2016.01.007

Norotte C, Marga F S, Niklason L E, et al., 2009, Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 30(30): 5910–5917. http://dx.doi.org/10.1016/j.biomaterials.2009.06.034

Ludwig G, Kartmann S, Troendle K, et al., 2017, Large scale production and controlled deposition of single HUVEC spheroids for bioprinting applications. Biofabrication, 9(2): 025027. http://dx.doi.org/10.1088/1758-5090/aa7218

Blakely A M, Manning K L, Tripathi A, et al., 2015, Bio-pick, place, and perfuse: A new instrument for three-dimensional tissue engineering. Tissue Eng Part C Methods,21(7): 737–746. http://dx.doi.org/10.1089/ten.TEC.2014.0439

Itoh M, K Nakayama K, Noguchi R, et al., 2015, Scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLOS ONE, 10(9): e0136681. http://dx.doi.org/10.1371/journal.pone.0145971

Ong C S, Fukunishi T, Zhang H, et al., 2017, Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci Rep, 7(1): 4566. http://dx.doi.org/10.1038/s41598-017-05018-4

Blanche C I, Cui F, Tripathi A, et al., 2016, The bio-gripper: A fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing. Biofabrication, 8(2): 025015. http://dx.doi.org/10.1088/1758-5090/8/2/025015

Fattah A R A, Meleca E, Mishriki S, et al., 2016, In situ 3D label-free contactless bioprinting of cells through diamagnetophoresis. ACS Biomater Sci Eng, 2(12): 2133–2138. http://dx.doi.org/10.1021/acsbiomaterials.6b00614

Souza G, Tseng H, Gage J A, et al., 2017, Magnetically bioprinted human myometrial 3D cell rings as a model for uterine contractility. Int J Mol Sci, 18(4): 683. http://dx.doi.org/10.3390/ijms18040683

Tseng H, Gage J A, Haisler W L, et al., 2016, A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting. Sci Rep, 6: 30640. 10.1038/srep30640

Whatley B R, Li X, Zhang N, et al., 2014, Magnetic-directed patterning of cell spheroids. J Biomed Mater Res A, 102(5): 1537–1547. http://dx.doi.org/10.1002/jbm.a.34797

Goh G D, Dikshit V, Nagalingam A P, et al., 2018, Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Mater Design, 137: 79–89. http://dx.doi.org/10.1016/j.matdes.2017.10.021




DOI: http://dx.doi.org/10.18063/ijb.v4i2.151

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Jia Min Lee, Swee Leong Sing, Miaomiao Zhou, Wai Yee Yeong

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Recent Articles | About Journal | For Author | Fees | About Whioce

Copyright © Whioce Publishing Pte Ltd. All Rights Reserved.