Open Journal Systems

3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering

VIEWS - 2431 (Abstract) 2894 (PDF)
Tae-Sik Jang, Hyun-Do Jung, Houwen Matthew Pan, Win Tun Han, Shenyang Chen, Juha Song


Three-dimensional (3D) printing of hydrogels is now an attractive area of research due to its capability to fabricate intricate, complex and highly customizable scaffold structures that can support cell adhesion and promote cell infiltration for tissue engineering. However, pure hydrogels alone lack the necessary mechanical stability and are too easily degraded to be used as printing ink. To overcome this problem, significant progress has been made in the 3D printing of hydrogel composites with improved mechanical performance and biofunctionality. Herein, we provide a brief overview of existing hydrogel composite 3D printing techniques including laser based-3D printing, nozzle based-3D printing, and inkjet printer based-3D printing systems. Based on the type of additives, we will discuss four main hydrogel composite systems in this review: polymer- or hydrogel-hydrogel composites, particle-reinforced hydrogel composites, fiber-reinforced hydrogel composites, and anisotropic filler-reinforced hydrogel composites. Additionally, several emerging potential applications of hydrogel composites in the field of tissue engineering and their accompanying challenges are discussed in parallel.


hydrogel composites; 3D printing; tissue engineering

Full Text:



Wang X, Jiang M, Zhou Z W, et al., 2017, 3D printing of polymer matrix composites: A review and prospective. Compos B Eng, 110: 442–458.

Chua C K and Leong K F, 3D printing and additive manufacturing : Principles and applications, 4th ed. Singapore: World Scientific Publishing; 2015.

Billiet T, Vandenhaute M, Schelfhout J, et al., 2012, A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 33(26): 6020–6041.

Ballyns J J, Gleghorn J P, Niebrzydowski V, et al., 2008, Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng Part A, 14(7): 1195–1202.

Chia H N and Wu B M, 2015, Recent advances in 3D printing of biomaterials. J Biol Eng, 9(1): 4

Seyednejad H, Gawlitta D, Kuiper R V, et al., 2012, In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(epsilon-caprolactone). Biomaterials, 33(17): 4309–4318.

Wu G H and Hsu S H, 2015, Review: Polymeric-Based 3D printing for tissue engineering. J Med Bioeng, 35(3): 285–292.

Utech S and Boccaccini A R, 2016, A review of hydrogel-based composites for biomedical applications: Enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci, 51(1): 271–310.

Gaharwar A K, Peppas N A and Khademhosseini A, 2014, Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng, 111(3): 441–453.

Xu K, Wang J H, Chen Q, et al., 2008, Spontaneous volume transition of polyampholyte nanocomposite hydrogels based on pure electrostatic interaction. J Colloid Interface Sci, 321(2): 272–278.

Kabiri K, Omidian H, Zohuriaan-Mehr M J, et al., 2011, Superabsorbent hydrogel composites and nanocomposites: A review. Polym Compos, 32(2): 277–289.

Thoniyot P, Tan M J, Karim A A, et al., 2015, Nanoparticle-Hydrogel composites: Concept, design, and applications of these promising, multi-functional materials. Adv Sci, 2(1–2).

Lee J W, Kim S Y, Kim S S, et al., 1999, Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid). J Appl Polym Sci, 73(1): 113–120.<113::AID-APP13>3.0.CO;2-D

Ehrburger P and Donnet J B, 1980, Interface in composite-materials. Philos Trans A Math Phys Eng Sci, 294(1411): 495–505.

Jeong S H, Koh Y H, Kim S W, et al., 2016, Strong and biostable hyaluronic acid-calcium phosphate nanocomposite hydrogel via in situ precipitation process. Biomacromolecules, 17(3): 841–851.

Wust S, Godla M E, Muller R, et al., 2014, Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater, 10(2): 630–640.

Duan B, Hockaday L A, Kang K H, et al., 2013, 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A, 101(5): 1255–1264.

Melchels F P W, Feijen J and Grijpma D W, 2010, A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24): 6121–6130.

Bertsch A, Jiguet S, Bernhard P, et al., 2003, Microstere-olithography: A review. Rapid Prototyping Technologies, 758: 3–15.

Beluze L, Bertsch A and Renaud P, 1999, Microstereolitho-graphy: A new process to build complex 3D objects. Design, Test, and Microfabrication of Mems and Moems, Pts 1 and 2, 3680: 808–817.

Choi J S, Kang H W, Lee I H, et al., 2009, Development of micro-stereolithography technology using a UV lamp and optical fiber. Int J Adv Manuf Technol, 41(3–4): 281–286.

Bertsch A, Renaud P, Vogt C, et al., 2000, Rapid prototyping of small size objects. Rapid Prototyp J, 6(4): 259–266.

Sun C, Fang N, Wu D M, et al., 2005, Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens Actuators A Phys, 121(1): 113–120.

Ambrosio L, Biomedical composites, 2nd ed. UK: Woodhead Publishing; 2010.

Maruo Sand Ikuta K, 2002, Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization. Sens Actuators A Phys, 100(1): 70–76.

Lee K S, Kim R H, Yang D Y, et al., 2008, Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog Polym Sci, 33(6): 631–681.

Weiss T, Hildebrand G, Schade R, et al., 2009, Two-Photon polymerization for microfabrication of three-dimensional scaffolds for tissue engineering application. Eng Life Sci, 9(5): 384–390.

Ostendorf A and Chichkov B N, 2006, Two-photon polymer-ization: A new approach to micromachining. Photonics Spectra, 40(10): 72–80.

Hutmacher D W, Sittinger M and Risbud M V, 2004, Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol, 22(7): 354–362.

Bikas H, Stavropoulos P and Chryssolouris G, 2016, Additive manufacturing methods and modelling approaches: A critical review. Int J Adv Manuf Technol, 83(1–4): 389–405.

Anitha R, Arunachalam S and Radhakrishnan P, 2001, Critical parameters influencing the quality of prototypes in fused deposition modelling. J Mater Process Technol, 118(1): 385–388.

Xiong Z, Yan Y, Zhang R, et al., 2001, Fabrication of porous poly (L-lactic acid) scaffolds for bone tissue engineering via precise extrusion. Scr Mater, 45(7): 773–779.

Greulich M, Greul M and Pintat T, 1995, Fast, functional prototypes via multiphase jet solidification. Rapid Prototyp J, 1(1): 20–25.

Shor L, Güçeri S, Chang R, et al., 2009, Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication, 1(1): 015003.

Torres J, Cotelo J, Karl J, et al., 2015, Mechanical property optimization of FDM PLA in shear with multiple objectives. JOM, 67(5): 1183–1193.

Yeong W Y, Chua C K, Leong K F, et al., 2004, Rapid prototyping in tissue engineering: Challenges and potential. Trends Biotechnol, 22(12): 643–652.

Gates R D, Baghdasarian G and Muscatine L, 1992, Temperature stress causes host-cell detachment in symbiotic cnidarians-implications for coral bleaching. Biol Bull, 182(3): 324–332.

Landers R and Mülhaupt R, 2000, Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng, 282(1): 17–21.<17::AID-MAME17>3.0.CO;2-8

Billiet T, Gevaert E, De Schryver T, et al., 2014, The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 35(1): 49–62.

Luo Y, Lode A, Akkineni A R, et al., 2015, Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Adv, 5(54): 43480–43488.

Akkineni A R, Luo Y, Schumacher M, et al., 2015, 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater, 27: 264–274.

Yilgor P, Sousa R A, Reis R L, et al., 3D plotted PCL scaffolds for stem cell based bone tissue engineering, Macromol Symp, 2008. Wiley Online Library, 269:92–99.

Landers R and Mulhaupt R, 2000, Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng, 282(9): 17–21.<17::Aid-Mame17>3.0.Co;2-8

Smay J E, Gratson G M, Shepherd R F, et al., 2002, Directed colloidal assembly of 3D periodic structures. Adv Mater, 14(18): 1279–1283.

Ahn B Y, Duoss E B, Motala M J, et al., 2009, Omnidir-ectional printing of flexible, stretchable, and spanning silver microelectrodes. Science, 323(5921): 1590–1593.

Vozzi G, Previti A, De Rossi D, et al., 2002, Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng, 8(6): 1089–1098.

Tartarisco G, Gallone G, Carpi F, et al., 2009, Polyurethane unimorph bender microfabricated with pressure assisted microsyringe (PAM) for biomedical applications. Mater Sci Eng C Mater Biol Appl, 29(6): 1835–1841.

Xiong Z, Yan Y, Wang S, et al., 2002, Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr Mater, 46(11): 771–776.

Liu L, Xiong Z, Zhang R, et al., 2009, A novel osteochondral scaffold fabricated via multi-nozzle low-temperature deposition manufacturing. J Bioact Compat Polym, 24(1): 18–30.

Vadnere M, Amidon G, Lindenbaum S, et al., 1984, Thermodynamic studies on the gel-sol transition of some pluronic polyols. Int J Pharm, 22(2–3): 207–218.

Kim J Y and Cho D-W, 2009, Blended PCL/PLGA scaffold fabrication using multi-head deposition system. Microelectron Eng, 86(4): 1447–1450.

Domingos M, Dinucci D, Cometa S, et al., 2009, Polycaprolactone scaffolds fabricated via bioextrusion for tissue engineering applications. Int J Biomater, 2009(1687–8787) : 239643.

Lam C, Olkowski R, Swieszkowski W, et al., 2008, Mechanical and in vitro evaluations of composite PLDLLA/TCP scaffolds for bone engineering. Virtual Phys Prototyp, 3(4): 193–197.

Lim T, Bang C, Chian K, et al., 2008, Development of cryogenic prototyping for tissue engineering. Virtual Phys Prototyp, 3(1): 25–31.

Bang Pham C, Fai Leong K, Chiun Lim T, et al., 2008, Rapid freeze prototyping technique in bio-plotters for tissue scaffold fabrication. Rapid Prototyp J, 14(4): 246–253.

Lu L, Zhang Q, Wootton D, et al., 2010, A novel sucrose porogen-based solid freeform fabrication system for bone scaffold manufacturing. Rapid Prototyp J, 16(5): 365–376.

Cima M, Sachs E, Fan T, et al., Three-dimensional printing techniques. US patent 5387380, 1995 July 2.

Mei J, Lovell M Rand Mickle M H, 2005, Formulation and processing of novel conductive solution inks in continuous inkjet printing of 3-D electric circuits. IEEE Trans Compon Packaging Manuf Technol, 28(3): 265–273.

Saunders R E, Gough J E and Derby B, 2008, Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials, 29(2): 193–203.

Nakamura M, Kobayashi A, Takagi F, et al., 2005, Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng, 11(11–12): 1658–1666.

Cui X, Dean D, Ruggeri Z M, et al., 2010, Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng, 106(6): 963–969.

Leukers B, Gülkan H, Irsen S H, et al., 2005, Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J MATER SCI-MATER M, 16(12): 1121–1124.

Inzana J A, Olvera D, Fuller S M, et al., 2014, 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials, 35(13): 4026–4034.

Levy A, Miriyev A, Elliott A, et al., 2017, Additive manufacturing of complex-shaped graded TiC/steel composites. Mater Design, 118: 198–203.

Pfister A, Landers R, Laib A, et al., 2004, Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J Polym Sci Pol Chem, 42(3): 624–638. https://

Boland T, Tao X, Damon B J, et al., 2007, Drop-on-demand printing of cells and materials for designer tissue constructs. Mater Sci Eng C Mater Biol Appl, 27(3): 372–376. https://

Sun J, Ng J H, Fuh Y H, et al., 2009, Comparison of micro-dispensing performance between micro-valve and piezoelectric printhead. Microsyst Technol, 15(9): 1437–1448. https://

Zustiak S P and Leach J B, 2010, Hydrolytically degradable poly (ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules, 11(5): 1348–1357. https://

Killion J A, Geever L M, Devine D M, et al., 2014, Compressive strength and bioactivity properties of photopolymerizable hybrid composite hydrogels for bone tissue engineering. Int J Polym Mater Po, 63(13): 641–650. https://

Bakarich S E, Gorkin R, Gately R, et al., 2017, 3D printing of tough hydrogel composites with spatially varying materials properties. Addit Manuf, 14: 24–30. https://

Zhao L, Lee V K, Yoo S-S, et al., 2012, The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials, 33(21): 5325–5332.

Hong S, Sycks D, Chan H F, et al., 2015, 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater, 27(27): 4035–4040.

Markstedt K, Mantas A, Tournier I, et al., 2015, 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules, 16(5): 1489–1496.

Rutz A L, Hyland K E, Jakus A E, et al., 2015, A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. AdvMater, 27(9): 1607–1614.

Xu M, Wang X, Yan Y, et al., 2010, An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix. Biomaterials, 31(14): 3868–3877.

Akkineni A R, Ahlfeld T, Funk A, et al., 2016, Highly concentrated alginate-gellan gum composites for 3D plotting of complex tissue engineering scaffolds. Polymers, 8(5): 170.

Boere K W, Blokzijl M M, Visser J,et al.,2015, Biofabrication of reinforced 3D-scaffolds using two-component hydrogels. J Mater Chem B Mater Biol Med, 3(46): 9067–9078.

Censi R, Schuurman W, Malda J, et al., 2011, A printable photopolymerizable thermosensitive p (HPMAm-lactate)-PEG hydrogel for tissue engineering. Adv Funct Mater, 21(10): 1833–1842.

Osterbur L, 2013, 3D printing of hyaluronic acid scaffolds for tissue engineering applications [Internet]. Available from:

Wang X, Cui T, Yan Y, et al., 2009, Peroneal nerve regeneration using a unique bilayer polyurethane-collagen guide conduit. J Bioact Compat Polym, 24(2): 109–127.

Mogas-Soldevila L, Duro-Royo J and Oxman N, 2014, Water-based robotic fabrication: Large-Scale additive manufacturing of functionally graded hydrogel composites via multichamber extrusion. 3D Print Addit Manuf, 1(3): 141–151.

Shie M-Y, Chang W-C, Wei L-J, et al., 2017, 3D printing of cytocompatible water-based light-cured polyurethane with hyaluronic acid for cartilage tissue engineering applications. Materials, 10(2): 136.

Wang X H, Tolba E, Schroder H C, et al., 2014, Effect of bioglass on growth and biomineralization of Saos-2 cells in hydrogel after 3D cell bioprinting. Plos One, 9(11): e112497

Sayyar S, Gambhir S, Chung J, et al., 2017, 3D printable conducting hydrogels containing chemically converted graphene. Nanoscale, 9(5): 2038–2050.

Demirtas T T, Irmak G and Gumusderelioglu M, 2017, A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication, 9(3): 035003.

Skardal A, Zhang J X, McCoard L, et al., 2010, Dynamically crosslinked gold nanoparticle–Hyaluronan hydrogels. Adv Mater, 22(42): 4736.

Fedorovich N E, Wijnberg H M, Dhert W J, et al., 2011, Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng Part A, 17(15–16): 2113–2121.

Panhuis M I H, Heurtematte A, Small W R, et al., 2007, Inkjet printed water sensitive transparent films from natural gum-carbon nanotube composites. Soft Matter, 3(7): 840–843.

Heo D N, Castro N J, Lee S J, et al., 2017, Enhanced bone tissue regeneration using a 3D printed microstructure incorporated with a hybrid nano hydrogel. Nanoscale, 9(16): 5055–5062.

Zhu W, Holmes B, Glazer R I, et al., 2016, 3D printed nanocomposite matrix for the study of breast cancer bone metastasis. Nanomedicine, 12(1): 69–79.

Castro N J, O'Brien J and Zhang L G, 2015, Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds. Nanoscale, 7(33): 14010–14022.

Gladman A S, Matsumoto E A, Nuzzo R G, et al., 2016, Biomimetic 4D printing. Nat Mater, 15(4): 413–418.

Narayanan L K, Huebner P, Fisher M B, et al., 2016, 3D-Bioprinting of polylactic acid (PLA) nanofiber-alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater Sci Eng, 2(10): 1732–1742.

Agrawal A, Rahbar N and Calvert P D, 2013, Strong fiber-reinforced hydrogel. Acta Biomaterialia, 9(2): 5313–5318.

Bakarich S E, Gorkin R, Panhuis M I H, et al., 2014, Three-dimensional printing fiber reinforced hydrogel composites. ACS Appl Mater Interfaces, 6(18): 15998–16006.

Jin Y, Liu C, Chai W, et al., 2017, Self-Supporting nanoclay as internal scaffold mterial for direct printing of soft hydrogelcomposite structures in air. ACS Appl Mater Interfaces, 9(20):17456–17465.

Zhai X, Ma Y, Hou C, et al., 2017, 3D-printed high strength bioactive supramolecular polymer/clay nanocomposite hydrogel scaffold for bone regeneration. ACS Biomater Sci Eng, 3(6): 1109–1118.

Ahlfeld T, Cidonio G, Kilian D, et al., 2017, Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication, 9(3).

Egorov A A, Fedotov A Y, Mironov A V, et al., 2016, 3D printing of mineral-polymer bone substitutes based on sodium alginate and calcium phosphate. Beilstein J Nanotechnol, 7(1): 1794–1799.

Rawat K, Agarwal S, Tyagi A, et al., 2014, Aspect ratio dependent cytotoxicity and antimicrobial properties of nanoclay. Appl Biochem Biotechnol, 174(3): 936–944.

Mourchid A, Delville A, Lambard J, et al., 1995, Phase diagram of colloidal dispersions of anisotropic charged particles: Equilibrium properties, structure, and rheology of laponite suspensions. Langmuir, 11(6): 1942–1950.

Su D, Jiang L, Chen X, et al., 2016, Enhancing the gelation and bioactivity of injectable silk fibroin hydrogel with laponite nanoplatelets. ACS Appl Mater Interfaces, 8(15): 9619–9628.

Liu Y, Meng H, Konst S, et al., 2014, Injectable dopamine-modified poly (ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity. ACS Appl Mater Interfaces, 6(19): 16982–16992.

Demirtaş T T, Irmak G and Gümüşderelioğlu M, 2017, A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication, 9(3): 035003.

Diogo G, Gaspar V, Serra I, et al., 2014, Manufacture of β-TCP/alginate scaffolds through a Fab@ home model for application in bone tissue engineering. Biofabrication, 6(2): 025001.

Kang M-H, Jang T-S, Jung H-D, et al., 2016, Poly (ether imide)-silica hybrid coatings for tunable corrosion behavior and improved biocompatibility of magnesium implants. Bioact Mater, 11(3): 035003.

Lee H, Kim Y, Kim S, et al., 2014, Mineralized biomimetic collagen/alginate/silica composite scaffolds fabricated by a low-temperature bio-plotting process for hard tissue regeneration: fabrication, characterisation and in vitro cellular activities. J Mater Chem B Mater Biol Med, 2(35): 5785–5798.

Wang X, Tolba E, Schröder H C, et al., 2014, Effect of bioglass on growth and biomineralization of SaOS-2 cells in hydrogel after 3D cell bioprinting. PLoS One, 9(11): e112497.

Huey D J, Hu J C and Athanasiou K A, 2012, Unlike bone, cartilage regeneration remains elusive. Science, 338(6109): 917–921.

Bartnikowski M, Akkineni A R, Gelinsky M, et al., 2016, A hydrogel model incorporating 3D-plotted hydroxyapatite for osteochondral tissue engineering. Materials, 9(4): 285.

Kundu J, Shim J H, Jang J, et al., 2015, An additive manufacturingbased PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med, 9(11): 1286–1297.

Xu T, Binder K W, Albanna M Z, et al., 2012, Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication, 5(1): 015001.

Wei J, Wang J, Su S, et al., 2015, 3D printing of an extremely tough hydrogel. RSC Adv, 5(99): 81324–81329.

Sugihara H, Toda S, Miyabara S, et al., 1991, Reconstruction of the skin in three-dimensional collagen gel matrix culture. In Vitro Cell Dev Biol Anim, 27(2): 142-146.

Dorsett-Martin W A, 2004, Rat models of skin wound healing: A review. Wound Repair Regen, 12(6): 591–599.

Skardal A, Mack D, Kapetanovic E, et al., 2012, Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med, 1(11): 792–802.

Sayyar S, Murray E, Thompson B, et al., 2015, Processable conducting graphene/chitosan hydrogels for tissue engineering. J Mater Chem B Mater Biol Med, 3(3): 481–490.

Suh J-K and Matthew H W, 2000, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials, 21(24): 2589–2598.

Knowlton S, Yenilmez B, Anand S, et al., 2017, Photocrosslinking-based bioprinting: Examining crosslinking schemes. Bioprinting, 5: 10–18. https://

Nair K, Gandhi M, Khalil S, et al., 2009, Characterization of cell viability during bioprinting processes. Biotechnol J, 4(8): 1168–1177.

Arslan-Yildiz A, El Assal R, Chen P, et al., 2016, Towards artificial tissue models: Past, present, and future of 3D bioprinting. Biofabrication, 8(1): 014103.

Pereira R Fand Bartolo P J, 2015, 3D bioprinting of photocross-linkable hydrogel constructs. J Appl Polym Sci, 132(48): 42458.

Kirchmajer D M, Gorkin R and Panhuis M I H, 2015, An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J Mater Chem B Mater Biol Med, 3(20): 4105–4117.

Chirag Khatiwala R L, Benjamin Shepherd, Scott Dorfman, et al., 2012, 3D cell bioprinting for regenerative medicine research and therapies. Gene Ther Regul, 7(1): 1230004.

Wang Z J, Jin X, Dai R, et al., 2016, An ultrafast hydrogel photocrosslinking method for direct laser bioprinting. RSC Adv, 6(25): 21099-21104.

Armstrong J P K, Burke M, Carter B M, et al., 2016, 3D bioprinting using a templated porous bioink. Adv Healthc Mater, 5(14): 1724–1730.

Cui X F, Breitenkamp K, Finn M G, et al., 2012, Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A, 18(11 –12): 1304–1312.

Fedorovich N E, Oudshoorn M H, van Geemen D, et al., 2009, The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials, 30(3): 344–353.

Folkman J and Hochberg M, 1973, Self-regulation of growth in three dimensions. J Exp Med, 138(4): 745–753.

Li S, Xiong Z, Wang X, et al., 2009, Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology. J Bioact Compat Polym, 24(3): 249-265.

Jia W, Gungor-Ozkerim P S, Zhang Y S, et al., 2016, Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials, 106: 58–68.

Skardal A, Zhang J and Prestwich G D, 2010, Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31(24): 6173–6181.

Dolati F, Yu Y, Zhang Y, et al., 2014, In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits. Nanotechnology, 25(14): 145101.

Gao B, Yang Q Z, Zhao X, et al., 2016, 4D bioprinting for biomedical applications. Trends Biotechnol, 34(9): 746–756.

Weiss R A, Izzo E and Mandelbaum S, 2008, New design of shape memory polymers: Mixtures of an elastomeric ionomer and low molar mass fatty acids and their salts. Macromolecules, 41(9): 2978–2980.

Leist S K and Zhou J, 2016, Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual Phys Prototyp, 11(4): 249–262.

He H Y, Guan J J and Lee J L, 2006, An oral delivery device based on self-folding hydrogels. J Control Release, 110(2): 339–346.

Khoo Z X, Teoh J E M, Liu Y, et al., 2015, 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual Phys Prototyp, 10(3): 103–122.

He Y, Wu Y, Fu J Z, et al., 2016, Developments of 3D Printing Microfluidics and Applications in Chemistry and Biology: a Review. Electroanalysis, 28(8): 1658-1678. 10.1002/elan.201600043

Lee V K, Lanzi A M, Ngo H, et al., 2014, Generation of Multi-scale Vascular Network System Within 3D Hydrogel Using 3D Bio-printing Technology. Cellular and Molecular Bioengineering, 7(3): 460-472. 10.1007/s12195-014-0340-0



  • There are currently no refbacks.

Copyright (c) 2018 Juha song

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.