3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering

VIEWS - 1301 (Abstract) 989 (PDF)
Tae-Sik Jang, Hyun-Do Jung, Houwen Matthew Pan, Win Tun Han, Shenyang Chen, Juha Song

Abstract


Three-dimensional (3D) printing of hydrogels is now an attractive area of research due to its capability to fabricate intricate, complex and highly customizable scaffold structures that can support cell adhesion and promote cell infiltration for tissue engineering. However, pure hydrogels alone lack the necessary mechanical stability and are too easily degraded to be used as printing ink. To overcome this problem, significant progress has been made in the 3D printing of hydrogel composites with improved mechanical performance and biofunctionality. Herein, we provide a brief overview of existing hydrogel composite 3D printing techniques including laser based-3D printing, nozzle based-3D printing, and inkjet printer based-3D printing systems. Based on the type of additives, we will discuss four main hydrogel composite systems in this review: polymer- or hydrogel-hydrogel composites, particle-reinforced hydrogel composites, fiber-reinforced hydrogel composites, and anisotropic filler-reinforced hydrogel composites. Additionally, several emerging potential applications of hydrogel composites in the field of tissue engineering and their accompanying challenges are discussed in parallel.


Keywords


hydrogel composites; 3D printing; tissue engineering

Full Text:

PDF

References


Wang X, Jiang M, Zhou Z W, et al., 2017, 3D printing of polymer matrix composites: A review and prospective. Compos B Eng, 110: 442–458. http://dx.doi.org/10.1016/j.compositesb.2016.11.034

Chua C K and Leong K F, 3D printing and additive manufacturing : Principles and applications, 4th ed. Singapore: World Scientific Publishing; 2015.

Billiet T, Vandenhaute M, Schelfhout J, et al., 2012, A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 33(26): 6020–6041. http://dx.doi.org/10.1016/j.biomaterials.2012.04.050

Ballyns J J, Gleghorn J P, Niebrzydowski V, et al., 2008, Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng Part A, 14(7): 1195–1202. http://dx.doi.org/10.1089/ten.tea.2007.0186

Chia H N and Wu B M, 2015, Recent advances in 3D printing of biomaterials. J Biol Eng, 9(1): 4 http://dx.doi.org/10.1186/S13036-015-0001-4

Seyednejad H, Gawlitta D, Kuiper R V, et al., 2012, In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(epsilon-caprolactone). Biomaterials, 33(17): 4309–4318. http://dx.doi.org/10.1016/j.biomaterials.2012.03.002

Wu G H and Hsu S H, 2015, Review: Polymeric-Based 3D printing for tissue engineering. J Med Bioeng, 35(3): 285–292. http://dx.doi.org/10.1007/s40846-015-0038-3

Utech S and Boccaccini A R, 2016, A review of hydrogel-based composites for biomedical applications: Enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci, 51(1): 271–310. http://dx.doi.org/10.1007/s10853-015-9382-5

Gaharwar A K, Peppas N A and Khademhosseini A, 2014, Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng, 111(3): 441–453. http://dx.doi.org/10.1002/bit.25160

Xu K, Wang J H, Chen Q, et al., 2008, Spontaneous volume transition of polyampholyte nanocomposite hydrogels based on pure electrostatic interaction. J Colloid Interface Sci, 321(2): 272–278. http://dx.doi.org/10.1016/j.jcis.2008.02.024

Kabiri K, Omidian H, Zohuriaan-Mehr M J, et al., 2011, Superabsorbent hydrogel composites and nanocomposites: A review. Polym Compos, 32(2): 277–289. http://dx.doi.org/10.1002/pc.21046

Thoniyot P, Tan M J, Karim A A, et al., 2015, Nanoparticle-Hydrogel composites: Concept, design, and applications of these promising, multi-functional materials. Adv Sci, 2(1–2). http://dx.doi.org/10.1002/Advs.201400010

Lee J W, Kim S Y, Kim S S, et al., 1999, Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid). J Appl Polym Sci, 73(1): 113–120. http://dx.doi.org/10.1002/(SICI)1097-4628(19990705)73:1<113::AID-APP13>3.0.CO;2-D

Ehrburger P and Donnet J B, 1980, Interface in composite-materials. Philos Trans A Math Phys Eng Sci, 294(1411): 495–505. http://dx.doi.org/10.1098/rsta.1980.0059

Jeong S H, Koh Y H, Kim S W, et al., 2016, Strong and biostable hyaluronic acid-calcium phosphate nanocomposite hydrogel via in situ precipitation process. Biomacromolecules, 17(3): 841–851. http://dx.doi.org/10.1021/acs.biomac.5b01557

Wust S, Godla M E, Muller R, et al., 2014, Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater, 10(2): 630–640. http://dx.doi.org/10.1016/j.actbio.2013.10.016

Duan B, Hockaday L A, Kang K H, et al., 2013, 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A, 101(5): 1255–1264. http://dx.doi.org/10.1002/jbm.a.34420

Melchels F P W, Feijen J and Grijpma D W, 2010, A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24): 6121–6130. http://dx.doi.org/10.1016/j.biomaterials.2010.04.050

Bertsch A, Jiguet S, Bernhard P, et al., 2003, Microstere-olithography: A review. Rapid Prototyping Technologies, 758: 3–15.

Beluze L, Bertsch A and Renaud P, 1999, Microstereolitho-graphy: A new process to build complex 3D objects. Design, Test, and Microfabrication of Mems and Moems, Pts 1 and 2, 3680: 808–817. http://dx.doi.org/10.1117/12.341277

Choi J S, Kang H W, Lee I H, et al., 2009, Development of micro-stereolithography technology using a UV lamp and optical fiber. Int J Adv Manuf Technol, 41(3–4): 281–286. http://dx.doi.org/10.1007/s00170-008-1461-1

Bertsch A, Renaud P, Vogt C, et al., 2000, Rapid prototyping of small size objects. Rapid Prototyp J, 6(4): 259–266. http://dx.doi.org/10.1108/13552540010373362

Sun C, Fang N, Wu D M, et al., 2005, Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens Actuators A Phys, 121(1): 113–120. http://dx.doi.org/10.1016/j.sna.2004.12.011

Ambrosio L, Biomedical composites, 2nd ed. UK: Woodhead Publishing; 2010.

Maruo Sand Ikuta K, 2002, Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization. Sens Actuators A Phys, 100(1): 70–76. http://dx.doi.org/10.1016/S0924-4247(02)00043-2

Lee K S, Kim R H, Yang D Y, et al., 2008, Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog Polym Sci, 33(6): 631–681. http://dx.doi.org/10.1016/j.progpolymsci.2008.01.001

Weiss T, Hildebrand G, Schade R, et al., 2009, Two-Photon polymerization for microfabrication of three-dimensional scaffolds for tissue engineering application. Eng Life Sci, 9(5): 384–390. http://dx.doi.org/10.1002/elsc.200900002

Ostendorf A and Chichkov B N, 2006, Two-photon polymer-ization: A new approach to micromachining. Photonics Spectra, 40(10): 72–80.

Hutmacher D W, Sittinger M and Risbud M V, 2004, Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol, 22(7): 354–362. http://dx.doi.org/10.1016/j.tibtech.2004.05.006

Bikas H, Stavropoulos P and Chryssolouris G, 2016, Additive manufacturing methods and modelling approaches: A critical review. Int J Adv Manuf Technol, 83(1–4): 389–405. http://dx.doi.org/10.1007/s00170-015-7576-2

Anitha R, Arunachalam S and Radhakrishnan P, 2001, Critical parameters influencing the quality of prototypes in fused deposition modelling. J Mater Process Technol, 118(1): 385–388. http://dx.doi.org/10.1016/S0924-0136(01)00980-3

Xiong Z, Yan Y, Zhang R, et al., 2001, Fabrication of porous poly (L-lactic acid) scaffolds for bone tissue engineering via precise extrusion. Scr Mater, 45(7): 773–779. http://dx.doi.org/10.1016/S1359-6462(01)01094-6

Greulich M, Greul M and Pintat T, 1995, Fast, functional prototypes via multiphase jet solidification. Rapid Prototyp J, 1(1): 20–25. http://dx.doi.org/10.1108/13552549510146649

Shor L, Güçeri S, Chang R, et al., 2009, Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication, 1(1): 015003. http://dx.doi.org/10.1088/1758-5082/1/1/015003

Torres J, Cotelo J, Karl J, et al., 2015, Mechanical property optimization of FDM PLA in shear with multiple objectives. JOM, 67(5): 1183–1193. http://dx.doi.org/10.1007/s11837-015-1367-y

Yeong W Y, Chua C K, Leong K F, et al., 2004, Rapid prototyping in tissue engineering: Challenges and potential. Trends Biotechnol, 22(12): 643–652. http://dx.doi.org/10.1016/j.tibtech.2004.10.004

Gates R D, Baghdasarian G and Muscatine L, 1992, Temperature stress causes host-cell detachment in symbiotic cnidarians-implications for coral bleaching. Biol Bull, 182(3): 324–332. http://dx.doi.org/10.2307/1542252

Landers R and Mülhaupt R, 2000, Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng, 282(1): 17–21. http://dx.doi.org/10.1002/1439-2054(20001001)282:1<17::AID-MAME17>3.0.CO;2-8

Billiet T, Gevaert E, De Schryver T, et al., 2014, The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 35(1): 49–62. http://dx.doi.org/10.1016/j.biomaterials.2013.09.078

Luo Y, Lode A, Akkineni A R, et al., 2015, Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Adv, 5(54): 43480–43488. http://dx.doi.org/10.1039/C5RA04308E

Akkineni A R, Luo Y, Schumacher M, et al., 2015, 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater, 27: 264–274. http://dx.doi.org/10.1016/j.actbio.2015.08.036

Yilgor P, Sousa R A, Reis R L, et al., 3D plotted PCL scaffolds for stem cell based bone tissue engineering, Macromol Symp, 2008. Wiley Online Library, 269:92–99. http://dx.doi.org/10.1002/masy.200850911

Landers R and Mulhaupt R, 2000, Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng, 282(9): 17–21. http://dx.doi.org/10.1002/1439-2054(20001001)282:1<17::Aid-Mame17>3.0.Co;2-8

Smay J E, Gratson G M, Shepherd R F, et al., 2002, Directed colloidal assembly of 3D periodic structures. Adv Mater, 14(18): 1279–1283.

Ahn B Y, Duoss E B, Motala M J, et al., 2009, Omnidir-ectional printing of flexible, stretchable, and spanning silver microelectrodes. Science, 323(5921): 1590–1593. https://dx.doi.org/10.1126/science.1168375

Vozzi G, Previti A, De Rossi D, et al., 2002, Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng, 8(6): 1089–1098. https://dx.doi.org/10.1089/107632702320934182

Tartarisco G, Gallone G, Carpi F, et al., 2009, Polyurethane unimorph bender microfabricated with pressure assisted microsyringe (PAM) for biomedical applications. Mater Sci Eng C Mater Biol Appl, 29(6): 1835–1841. https://dx.doi.org/10.1016/j.msec.2009.02.017

Xiong Z, Yan Y, Wang S, et al., 2002, Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr Mater, 46(11): 771–776. https://dx.doi.org/10.1016/S1359-6462(02)00071-4

Liu L, Xiong Z, Zhang R, et al., 2009, A novel osteochondral scaffold fabricated via multi-nozzle low-temperature deposition manufacturing. J Bioact Compat Polym, 24(1): 18–30. https://dx.doi.org/10.1177/0883911509102347

Vadnere M, Amidon G, Lindenbaum S, et al., 1984, Thermodynamic studies on the gel-sol transition of some pluronic polyols. Int J Pharm, 22(2–3): 207–218. https://dx.doi.org/10.1016/0378-5173(84)90022-X

Kim J Y and Cho D-W, 2009, Blended PCL/PLGA scaffold fabrication using multi-head deposition system. Microelectron Eng, 86(4): 1447–1450. https://dx.doi.org/10.1016/j.mee.2008.11.026

Domingos M, Dinucci D, Cometa S, et al., 2009, Polycaprolactone scaffolds fabricated via bioextrusion for tissue engineering applications. Int J Biomater, 2009(1687–8787) : 239643. https://dx.doi.org/10.1155/2009/239643

Lam C, Olkowski R, Swieszkowski W, et al., 2008, Mechanical and in vitro evaluations of composite PLDLLA/TCP scaffolds for bone engineering. Virtual Phys Prototyp, 3(4): 193–197. https://dx.doi.org/10.1080/17452750802551298

Lim T, Bang C, Chian K, et al., 2008, Development of cryogenic prototyping for tissue engineering. Virtual Phys Prototyp, 3(1): 25–31. https://dx.doi.org/10.1080/17452750701799303

Bang Pham C, Fai Leong K, Chiun Lim T, et al., 2008, Rapid freeze prototyping technique in bio-plotters for tissue scaffold fabrication. Rapid Prototyp J, 14(4): 246–253. https://dx.doi.org/10.1108/13552540810896193

Lu L, Zhang Q, Wootton D, et al., 2010, A novel sucrose porogen-based solid freeform fabrication system for bone scaffold manufacturing. Rapid Prototyp J, 16(5): 365–376. https://dx.doi.org/10.1108/13552541011065768

Cima M, Sachs E, Fan T, et al., Three-dimensional printing techniques. US patent 5387380, 1995 July 2.

Mei J, Lovell M Rand Mickle M H, 2005, Formulation and processing of novel conductive solution inks in continuous inkjet printing of 3-D electric circuits. IEEE Trans Compon Packaging Manuf Technol, 28(3): 265–273. https://dx.doi.org/10.1109/TEPM.2005.852542

Saunders R E, Gough J E and Derby B, 2008, Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials, 29(2): 193–203. https://dx.doi.org/10.1016/j.biomaterials.2007.09.032

Nakamura M, Kobayashi A, Takagi F, et al., 2005, Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng, 11(11–12): 1658–1666. https://dx.doi.org/10.1089/ten.2005.11.1658

Cui X, Dean D, Ruggeri Z M, et al., 2010, Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng, 106(6): 963–969. https://dx.doi.org/10.1002/bit.22762

Leukers B, Gülkan H, Irsen S H, et al., 2005, Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J MATER SCI-MATER M, 16(12): 1121–1124. https://dx.doi.org/10.1007/s10856-005-4716-5

Inzana J A, Olvera D, Fuller S M, et al., 2014, 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials, 35(13): 4026–4034. https://dx.doi.org/10.1016/j.biomaterials.2014.01.064

Levy A, Miriyev A, Elliott A, et al., 2017, Additive manufacturing of complex-shaped graded TiC/steel composites. Mater Design, 118: 198–203. https://dx.doi.org/10.1016/j.matdes.2017.01.024

Pfister A, Landers R, Laib A, et al., 2004, Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J Polym Sci Pol Chem, 42(3): 624–638. https:// dx.doi.org/10.1002/pola.10807

Boland T, Tao X, Damon B J, et al., 2007, Drop-on-demand printing of cells and materials for designer tissue constructs. Mater Sci Eng C Mater Biol Appl, 27(3): 372–376. https:// dx.doi.org/10.1016/j.msec.2006.05.047

Sun J, Ng J H, Fuh Y H, et al., 2009, Comparison of micro-dispensing performance between micro-valve and piezoelectric printhead. Microsyst Technol, 15(9): 1437–1448. https:// dx.doi.org/10.1007/s00542-009-0905-3

Zustiak S P and Leach J B, 2010, Hydrolytically degradable poly (ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules, 11(5): 1348–1357. https:// dx.doi.org/10.1021/bm100137q

Killion J A, Geever L M, Devine D M, et al., 2014, Compressive strength and bioactivity properties of photopolymerizable hybrid composite hydrogels for bone tissue engineering. Int J Polym Mater Po, 63(13): 641–650. https:// dx.doi.org/10.1080/00914037.2013.854238

Bakarich S E, Gorkin R, Gately R, et al., 2017, 3D printing of tough hydrogel composites with spatially varying materials properties. Addit Manuf, 14: 24–30. https:// dx.doi.org/10.1016/j.addma.2016.12.003

Zhao L, Lee V K, Yoo S-S, et al., 2012, The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials, 33(21): 5325–5332. http://dx.doi.org/10.1016/j.biomaterials.2012.04.004

Hong S, Sycks D, Chan H F, et al., 2015, 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater, 27(27): 4035–4040. http://dx.doi.org/10.1002/adma.201501099

Markstedt K, Mantas A, Tournier I, et al., 2015, 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules, 16(5): 1489–1496. http://dx.doi.org/10.1021/acs.biomac.5b00188

Rutz A L, Hyland K E, Jakus A E, et al., 2015, A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. AdvMater, 27(9): 1607–1614. http://dx.doi.org/10.1002/adma.201405076

Xu M, Wang X, Yan Y, et al., 2010, An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix. Biomaterials, 31(14): 3868–3877. http://dx.doi.org/10.1016/j.biomaterials.2010.01.111

Akkineni A R, Ahlfeld T, Funk A, et al., 2016, Highly concentrated alginate-gellan gum composites for 3D plotting of complex tissue engineering scaffolds. Polymers, 8(5): 170. http://dx.doi.org/10.3390/polym8050170

Boere K W, Blokzijl M M, Visser J,et al.,2015, Biofabrication of reinforced 3D-scaffolds using two-component hydrogels. J Mater Chem B Mater Biol Med, 3(46): 9067–9078. http://dx.doi.org/10.1039/C5TB01645B

Censi R, Schuurman W, Malda J, et al., 2011, A printable photopolymerizable thermosensitive p (HPMAm-lactate)-PEG hydrogel for tissue engineering. Adv Funct Mater, 21(10): 1833–1842. http://dx.doi.org/10.1002/adfm.201002428

Osterbur L, 2013, 3D printing of hyaluronic acid scaffolds for tissue engineering applications [Internet]. Available from: http://hdl.handle.net/2142/44207

Wang X, Cui T, Yan Y, et al., 2009, Peroneal nerve regeneration using a unique bilayer polyurethane-collagen guide conduit. J Bioact Compat Polym, 24(2): 109–127. http://dx.doi.org/10.1177/0883911508101183

Mogas-Soldevila L, Duro-Royo J and Oxman N, 2014, Water-based robotic fabrication: Large-Scale additive manufacturing of functionally graded hydrogel composites via multichamber extrusion. 3D Print Addit Manuf, 1(3): 141–151. http://dx.doi.org/10.1089/3dp.2014.0014

Shie M-Y, Chang W-C, Wei L-J, et al., 2017, 3D printing of cytocompatible water-based light-cured polyurethane with hyaluronic acid for cartilage tissue engineering applications. Materials, 10(2): 136. http://dx.doi.org/10.3390/ma10020136

Wang X H, Tolba E, Schroder H C, et al., 2014, Effect of bioglass on growth and biomineralization of Saos-2 cells in hydrogel after 3D cell bioprinting. Plos One, 9(11): e112497 http://dx.doi.org/10.1371/journal.pone.0112497

Sayyar S, Gambhir S, Chung J, et al., 2017, 3D printable conducting hydrogels containing chemically converted graphene. Nanoscale, 9(5): 2038–2050. http://dx.doi.org/10.1039/c6nr07516a

Demirtas T T, Irmak G and Gumusderelioglu M, 2017, A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication, 9(3): 035003. http://dx.doi.org/10.1088/1758-5090/Aa7b1d

Skardal A, Zhang J X, McCoard L, et al., 2010, Dynamically crosslinked gold nanoparticle–Hyaluronan hydrogels. Adv Mater, 22(42): 4736. http://dx.doi.org/10.1002/adma.201001436

Fedorovich N E, Wijnberg H M, Dhert W J, et al., 2011, Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng Part A, 17(15–16): 2113–2121. http://dx.doi.org/10.1089/ten.tea.2011.0019

Panhuis M I H, Heurtematte A, Small W R, et al., 2007, Inkjet printed water sensitive transparent films from natural gum-carbon nanotube composites. Soft Matter, 3(7): 840–843. http://dx.doi.org/10.1039/b704368f

Heo D N, Castro N J, Lee S J, et al., 2017, Enhanced bone tissue regeneration using a 3D printed microstructure incorporated with a hybrid nano hydrogel. Nanoscale, 9(16): 5055–5062. http://dx.doi.org/10.1039/c6nr09652b

Zhu W, Holmes B, Glazer R I, et al., 2016, 3D printed nanocomposite matrix for the study of breast cancer bone metastasis. Nanomedicine, 12(1): 69–79. http://dx.doi.org/10.1016/j.nano.2015.09.010

Castro N J, O'Brien J and Zhang L G, 2015, Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds. Nanoscale, 7(33): 14010–14022. http://dx.doi.org/10.1039/c5nr03425f

Gladman A S, Matsumoto E A, Nuzzo R G, et al., 2016, Biomimetic 4D printing. Nat Mater, 15(4): 413–418. http://dx.doi.org/10.1038/NMAT4544

Narayanan L K, Huebner P, Fisher M B, et al., 2016, 3D-Bioprinting of polylactic acid (PLA) nanofiber-alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater Sci Eng, 2(10): 1732–1742. http://dx.doi.org/10.1021/acsbiomaterials.6b00196

Agrawal A, Rahbar N and Calvert P D, 2013, Strong fiber-reinforced hydrogel. Acta Biomaterialia, 9(2): 5313–5318. http://dx.doi.org/10.1016/j.actbio.2012.10.011

Bakarich S E, Gorkin R, Panhuis M I H, et al., 2014, Three-dimensional printing fiber reinforced hydrogel composites. ACS Appl Mater Interfaces, 6(18): 15998–16006. http://dx.doi.org/10.1021/am503878d

Jin Y, Liu C, Chai W, et al., 2017, Self-Supporting nanoclay as internal scaffold mterial for direct printing of soft hydrogelcomposite structures in air. ACS Appl Mater Interfaces, 9(20):17456–17465. http://dx.doi.org/10.1021/acsami.7b03613

Zhai X, Ma Y, Hou C, et al., 2017, 3D-printed high strength bioactive supramolecular polymer/clay nanocomposite hydrogel scaffold for bone regeneration. ACS Biomater Sci Eng, 3(6): 1109–1118. http://dx.doi.org/10.1021/acsbiomaterials.7b00224

Ahlfeld T, Cidonio G, Kilian D, et al., 2017, Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication, 9(3). http://dx.doi.org/10.1088/1758-5090/aa7e96

Egorov A A, Fedotov A Y, Mironov A V, et al., 2016, 3D printing of mineral-polymer bone substitutes based on sodium alginate and calcium phosphate. Beilstein J Nanotechnol, 7(1): 1794–1799. http://dx.doi.org/10.3762/bjnano.7.172

Rawat K, Agarwal S, Tyagi A, et al., 2014, Aspect ratio dependent cytotoxicity and antimicrobial properties of nanoclay. Appl Biochem Biotechnol, 174(3): 936–944. http://dx.doi.org/10.1007/s12010-014-0983-2

Mourchid A, Delville A, Lambard J, et al., 1995, Phase diagram of colloidal dispersions of anisotropic charged particles: Equilibrium properties, structure, and rheology of laponite suspensions. Langmuir, 11(6): 1942–1950. http://dx.doi.org/10.1021/la00006a020

Su D, Jiang L, Chen X, et al., 2016, Enhancing the gelation and bioactivity of injectable silk fibroin hydrogel with laponite nanoplatelets. ACS Appl Mater Interfaces, 8(15): 9619–9628. http://dx.doi.org/10.1021/acsami.6b00891

Liu Y, Meng H, Konst S, et al., 2014, Injectable dopamine-modified poly (ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity. ACS Appl Mater Interfaces, 6(19): 16982–16992. http://dx.doi.org/10.1021/am504566v

Demirtaş T T, Irmak G and Gümüşderelioğlu M, 2017, A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication, 9(3): 035003. http://dx.doi.org/10.1088/1758-5090/aa7b1d

Diogo G, Gaspar V, Serra I, et al., 2014, Manufacture of β-TCP/alginate scaffolds through a Fab@ home model for application in bone tissue engineering. Biofabrication, 6(2): 025001. http://dx.doi.org/10.1088/1758-5082/6/2/025001

Kang M-H, Jang T-S, Jung H-D, et al., 2016, Poly (ether imide)-silica hybrid coatings for tunable corrosion behavior and improved biocompatibility of magnesium implants. Bioact Mater, 11(3): 035003. http://dx.doi.org/10.1088/1748-6041/11/3/035003

Lee H, Kim Y, Kim S, et al., 2014, Mineralized biomimetic collagen/alginate/silica composite scaffolds fabricated by a low-temperature bio-plotting process for hard tissue regeneration: fabrication, characterisation and in vitro cellular activities. J Mater Chem B Mater Biol Med, 2(35): 5785–5798. http://dx.doi.org/10.1039/C4TB00931B

Wang X, Tolba E, Schröder H C, et al., 2014, Effect of bioglass on growth and biomineralization of SaOS-2 cells in hydrogel after 3D cell bioprinting. PLoS One, 9(11): e112497. http://dx.doi.org/10.1371/journal.pone.0112497

Huey D J, Hu J C and Athanasiou K A, 2012, Unlike bone, cartilage regeneration remains elusive. Science, 338(6109): 917–921. http://dx.doi.org/10.1126/science.1222454

Bartnikowski M, Akkineni A R, Gelinsky M, et al., 2016, A hydrogel model incorporating 3D-plotted hydroxyapatite for osteochondral tissue engineering. Materials, 9(4): 285. http://dx.doi.org/10.3390/ma9040285

Kundu J, Shim J H, Jang J, et al., 2015, An additive manufacturingbased PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med, 9(11): 1286–1297. http://dx.doi.org/10.1002/term.1682

Xu T, Binder K W, Albanna M Z, et al., 2012, Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication, 5(1): 015001. http://dx.doi.org/10.1088/1758-5082/5/1/015001

Wei J, Wang J, Su S, et al., 2015, 3D printing of an extremely tough hydrogel. RSC Adv, 5(99): 81324–81329. http://dx.doi.org/10.1039/C5RA16362E

Sugihara H, Toda S, Miyabara S, et al., 1991, Reconstruction of the skin in three-dimensional collagen gel matrix culture. In Vitro Cell Dev Biol Anim, 27(2): 142-146. http://dx.doi.org/10.1007/BF02631000

Dorsett-Martin W A, 2004, Rat models of skin wound healing: A review. Wound Repair Regen, 12(6): 591–599. http://dx.doi.org/10.1111/j.1067-1927.2004.12601.x

Skardal A, Mack D, Kapetanovic E, et al., 2012, Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med, 1(11): 792–802. http://dx.doi.org/10.5966/sctm.2012-0088

Sayyar S, Murray E, Thompson B, et al., 2015, Processable conducting graphene/chitosan hydrogels for tissue engineering. J Mater Chem B Mater Biol Med, 3(3): 481–490. http://dx.doi.org/10.1039/C4TB01636J

Suh J-K and Matthew H W, 2000, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials, 21(24): 2589–2598. http://dx.doi.org/10.1016/S0142-9612(00)00126-5

Knowlton S, Yenilmez B, Anand S, et al., 2017, Photocrosslinking-based bioprinting: Examining crosslinking schemes. Bioprinting, 5: 10–18. https:// dx.doi.org/10.1016/j.bprint.2017.03.001

Nair K, Gandhi M, Khalil S, et al., 2009, Characterization of cell viability during bioprinting processes. Biotechnol J, 4(8): 1168–1177. http://dx.doi.org/10.1002/biot.200900004

Arslan-Yildiz A, El Assal R, Chen P, et al., 2016, Towards artificial tissue models: Past, present, and future of 3D bioprinting. Biofabrication, 8(1): 014103.http://dx.doi.org/10.1088/1758-5090/8/1/014103

Pereira R Fand Bartolo P J, 2015, 3D bioprinting of photocross-linkable hydrogel constructs. J Appl Polym Sci, 132(48): 42458.http://dx.doi.org/10.1002/App.42458

Kirchmajer D M, Gorkin R and Panhuis M I H, 2015, An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J Mater Chem B Mater Biol Med, 3(20): 4105–4117. http://dx.doi.org/10.1039/c5tb00393h

Chirag Khatiwala R L, Benjamin Shepherd, Scott Dorfman, et al., 2012, 3D cell bioprinting for regenerative medicine research and therapies. Gene Ther Regul, 7(1): 1230004. http://dx.doi.org/10.1142/S1568558611000301

Wang Z J, Jin X, Dai R, et al., 2016, An ultrafast hydrogel photocrosslinking method for direct laser bioprinting. RSC Adv, 6(25): 21099-21104. http://dx.doi.org/10.1039/c5ra24910d

Armstrong J P K, Burke M, Carter B M, et al., 2016, 3D bioprinting using a templated porous bioink. Adv Healthc Mater, 5(14): 1724–1730. http://dx.doi.org/10.1002/adhm.201600022

Cui X F, Breitenkamp K, Finn M G, et al., 2012, Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A, 18(11 –12): 1304–1312. http://dx.doi.org/10.1089/ten.tea.2011.0543

Fedorovich N E, Oudshoorn M H, van Geemen D, et al., 2009, The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials, 30(3): 344–353. http://dx.doi.org/10.1016/j.biomaterials.2008.09.037

Folkman J and Hochberg M, 1973, Self-regulation of growth in three dimensions. J Exp Med, 138(4): 745–753.

Li S, Xiong Z, Wang X, et al., 2009, Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology. J Bioact Compat Polym, 24(3): 249-265. http://dx.doi.org/10.1016/j.biomaterials.2016.07.038

Jia W, Gungor-Ozkerim P S, Zhang Y S, et al., 2016, Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials, 106: 58–68. http://dx.doi.org/10.1016/j.biomaterials.2016.07.038

Skardal A, Zhang J and Prestwich G D, 2010, Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31(24): 6173–6181. http://dx.doi.org/10.1016/j.biomaterials.2010.04.045

Dolati F, Yu Y, Zhang Y, et al., 2014, In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits. Nanotechnology, 25(14): 145101. http://dx.doi.org/10.1088/0957-4484/25/14/145101

Gao B, Yang Q Z, Zhao X, et al., 2016, 4D bioprinting for biomedical applications. Trends Biotechnol, 34(9): 746–756. http://dx.doi.org/10.10164.tibtech.2016.03.004

Weiss R A, Izzo E and Mandelbaum S, 2008, New design of shape memory polymers: Mixtures of an elastomeric ionomer and low molar mass fatty acids and their salts. Macromolecules, 41(9): 2978–2980. http://dx.doi.org/10.1021/ma8001774

Leist S K and Zhou J, 2016, Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual Phys Prototyp, 11(4): 249–262. http://dx.doi.org/10.1080/17452759.2016.1198630

He H Y, Guan J J and Lee J L, 2006, An oral delivery device based on self-folding hydrogels. J Control Release, 110(2): 339–346. http://dx.doi.org/10.1016/j.jconrel.2005.10.017

Khoo Z X, Teoh J E M, Liu Y, et al., 2015, 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual Phys Prototyp, 10(3): 103–122. http://dx.doi.org/10.1080/17452759.2015.1097054

He Y, Wu Y, Fu J Z, et al., 2016, Developments of 3D Printing Microfluidics and Applications in Chemistry and Biology: a Review. Electroanalysis, 28(8): 1658-1678. 10.1002/elan.201600043

Lee V K, Lanzi A M, Ngo H, et al., 2014, Generation of Multi-scale Vascular Network System Within 3D Hydrogel Using 3D Bio-printing Technology. Cellular and Molecular Bioengineering, 7(3): 460-472. 10.1007/s12195-014-0340-0




DOI: http://dx.doi.org/10.18063/ijb.v4i1.126

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Juha song

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Recent Articles | About Journal | For Author | Fees | About Whioce

Copyright © Whioce Publishing Pte Ltd. All Rights Reserved.