Printing amphotericin B on microneedles using matrix-assisted pulsed laser evaporation

Roger Sachan, Panupong Jaipan, Jennifer Y. Zhang, Simone Degan, Detlev Erdmann, Jonathan Tedesco, Lyndsi Vanderwal, Shane J. Stafslien, Irina Negut, Anita Visan, Gabriela Dorcioman, Gabriel Socol, Rodica Cristescu, Douglas B. Chrisey, Roger J. Narayan

Article ID: 117
Vol 3, Issue 2, 2017, Article identifier:147-157

VIEWS - 6837 (Abstract) 1250 (PDF)


Transdermal delivery of amphotericin B, a pharmacological agent with activity against fungi and parasitic protozoa, is a challenge since amphotericin B exhibits poor solubility in aqueous solutions at physiologic pH values. In this study, we have used a laser-based printing approach known as matrix-assisted pulsed laser evaporation to print amphotericin B on the surfaces of polyglycolic acid microneedles that were prepared using a combination of injection molding and drawing lithography. In a modified agar disk diffusion assay, the amphotericin B-loaded microneedles showed concentrationdependent activity against the yeast Candida albicans. The results of this study suggest that matrix-assisted pulsed laser evaporation may be used to print amphotericin B and other drugs that have complex solubility issues on the surfaces of microneedles.


matrix-assisted pulsed laser evaporation; microneedle; amphotericin B; antifungal

Full Text:

Download PDF

Included Database


Ostrosky-Zeichner L, Marr K A, Rex J H, et al., 2003, Amphotericin B: time for a new “gold standard”. Clinical Infectious Diseases, vol.37(3): 415–425.

Torrado J J, Espada R, Ballesteros M P, et al., 2008, Amphotericin B formulations and drug targeting. Journal of Pharmaceutical Sciences, vol.97(7): 2405–2425.

Trejo W H and Bennett R E, 1963, Streptomyces nodosus sp. nov., the amphotericin-producing organism. Journal of Bacteriology, vol.85(2): 436–439.

Hamill R J, 2013, Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs, vol.73(9): 919–934.

Laniado-Laborin R and Cabrales-Vargas M N, 2009, Amphotericin B: Side effects and toxicity. Revista Iberoamericana de Micología, vol.26(4): 223–227.

Khanna P, Strom J A, Malone J I, et al., 2008, Microneedle-based automated therapy for diabetes mellitus. Journal of Diabetes Science and Technology, vol.2(6): 1122–1129.


Baria S H, Gohel M C, Mehta T A, et al., 2011, Microneedles: An emerging transdermal drug delivery system. Journal of Pharmacology and Pharmacotherapeutics, vol.64(1): 11–29.

Arora A, Prausnitz M R, Mitragotri S, 2008, Micro-scale devices for transdermal drug delivery. International Journal of Pharmaceutics, vol.364(2): 227–236.

Gill H S, Denson D D, Burris B A, et al., 2008, Effect of microneedle design on pain in human volunteers. The Clinical Journal of Pain, vol. 24(7): 585–594.

Nahar M, Mishra D, Dubey V, et al., 2008, Development, characterization, and toxicity evaluation of amphotericin B–loaded gelatin nanoparticles. Nanomedicine, vol.4(3): 252–261.

Boehm R D, Miller P R, Schell W A, et al., 2013, Inkjet printing of amphotericin B onto biodegradable microneedles using piezoelectric inkjet printing. JOM, vol.65(4): 525–533.

Boehm R D, Daniels J, Stafslien S, et al., 2015, Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings. Biointerphases, vol.10(1): 011004.

Boehm R D. Jaipan P, Skoog S A, et al., 2016, Inkjet deposition of itraconazole onto poly(glycolic acid) microneedle arrays. Biointerphases, vol.11(1): 011008.

Wu P K, Ringeisen B R, Krizman D B, et al., 2003, Laser transfer of biomaterials: Matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE Direct Write. Review of Scientific Instruments, vol.74(4): 2546–2557.

Schmidmaier G, Wildemann B, Stemberger A, et al., 2001, Biodegradable poly(ᴅ,ʟ-Lactide) coating of implants for continuous release of growth factors. Journal of Biomedical Materials Research (Applied Biomaterials), vol.58(4): 449–455.

Kumar N, Langer R S, Domb A J, 2002, Polyanhydrides: An overview. Advanced Drug Delivery Reviews, vol.54(7): 889–910.

Shieh L, Tamada J, Chen I, et al., 1994, Erosion of a new family of biodegradable polyanhydrides. Journal of Biomedical Materials Research, vol.28(12): 1465–1475.

Göpferich A and Tessmar, J, 2002, Polyanhydride degradation and erosion. Advanced Drug Delivery Reviews, vol.54(7): 911–931.

Patz T M, Doraiswamy A, Narayan R J, et al., 2007, Matrix assisted pulsed laser evaporation of biomaterial thin films. Materials Science and Engineering C, vol.27(3): 514–522.

Iordache F, Grumezescu V, Grumezescu AM, et al., 2015, Gamma-cyclodextrin/usnic acid thin film fabricated by MAPLE for improving the resistance of medical surfaces to Staphylococcus aureus colonization. Applied Surface Science, vol.336(1): 407–412.

Cristescu R, Popescu C, Socol G, et al., 2011, Deposition of antibacterial of poly(1,3-bis-(p-carboxyphenoxy propane)-co-(sebacic anhydride)) 20:80/gentamicin sulfate composite coatings by MAPLE. Applied Surface Science, vol.257(12): 5287–5292.

Cristescu R, Popescu C, Dorcioman G, et al., 2013, Antimicrobial activity of biopolymer-antibiotic thin films fabricated by advanced pulsed laser methods. Applied Surface Science, vol.278: 211–213.

Li X, Gao H, Murphy C J, et al., 2003, Nanoindentation of silver nanowires. Nano Letters, vol.3(11): 1495–1498.

Machekposhti S A, Soltani M, Najafizadeh P, et al., 2017, Biocompatible polymer microneedle for topical/dermal delivery of tranexamic acid, Journal of Controlled Release, vol.261: 87–92.

Capriotti K and Capriotti J A, 2015, Onychomycosis treated with a dilute povidone-iodine/dimethyl sulfoxide preparation, International Medical Case Reports Journal, vol.8: 231–3.

Piqué A, 2011, The matrix-assisted pulsed laser evaporation (MAPLE) process: Origins and future directions, Applied Physics A, vol.105(3): 517–528.

Bubb D M, McGill R A, Horwitz J S, et al., 2001, Laser-based processing of polymer nanocomposites for chemical sensing applications, Journal of Applied Physics, vol.89(10): 5739–5746.

Paun I A, Ion V, Moldovan A, et al., 2012, MAPLE deposition of PEG:PLGA thin films, Applied Physcia A, vol.106(1): 197–205.

Jovanović Ž, Radosavljević A, Šiljegović M, et al., 2012, Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by γ-irradiation, Radiation Physics and Chemistry, vol.81(11): 1720–1728.

Majumdar P, Lee E, Gubbins N, et al., 2009, Synthesis and antimicrobial activity of quaternary ammonium-functionalized POSS (Q-POSS) and polysiloxane coatings containing Q-POSS, Polymer, vol.50(5): 1124–1133.

Narayan R J, Adiga S P, Pellin M J, et al., 2010, Atomic layer deposition of nanoporous biomaterials, Materials Today, vol.13(3): 60–64.

Majumdar P, He J, Lee E, et al., 2010, Antimicrobial activity of polysiloxane coatings containing quaternary ammonium-functionalized polyhedral oligomeric silsesquioxane, Journal of Coatings Technology and Research, vol.7(4): 455–467.

Kugel A, Chisholm B, Ebert S, et al., 2010, Antimicrobial polysiloxane polymers and coatings containing pendant levofloxacin, Polymer Chemistry, vol.1(4): 442–452.

Gittard S D, Ovsianikov A, Monteiro-Riviere N A, et al., 2009, Fabrication of polymer microneedles using a two-photon polymerization and micromolding process. Journal of Diabetes Science and Technology, vol.3(2): 304–311.

Park J H, Allen M G, Prausnitz M R, 2005, Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. Journal of Controlled Release, vol.104(1): 51–66.

Singh P K, Sah P, Meher J G, et al., 2016, Macrophage-targeted chitosan anchored PLGA nanoparticles bearing doxorubicin and amphotericin B against visceral leishmaniasis. RSC Advances, vol.6(75): 71705–71718.

Wallace V M, Dhumal N R, Zehentbauer F M, et al., 2015, Revisiting the aqueous solutions of dimethyl sulfoxide by spectroscopy in the mid- and near-infrared: Experiments and Car–Parrinello simulations. Journal of Physical Chemistry B, vol.119(46): 14780–14789.

Espinel-Ingroff A, Canton E, Fothergill A, et al., 2011, Quality control guidelines for amphotericin B, itraconazole, posaconazole, and voriconazole disk diffusion susceptibility tests with non-supplemented Mueller-Hinton Agar (CLSI M51-A document) for nondermatophyte filamentous fungi. Journal of Clinical Microbiology, vol.49(7): 2568–2572.



  • There are currently no refbacks.

Copyright (c) 2017 Roger Sachan, Panupong Jaipan, Jennifer Y. Zhang, Simone Degan, Detlev Erdmann, Jonathan Tedesco, Lyndsi Vanderwal, Shane J. Stafslien, Irina Negut, Anita Visan, Gabriela Dorcioman, Gabriel Socol, Rodica Cristescu, Douglas B. Chrisey, Roger J. Narayan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.