Printing amphotericin B on microneedles using matrix-assisted pulsed laser evaporation

Roger Sachan, Panupong Jaipan, Jennifer Y. Zhang, Simone Degan, Detlev Erdmann, Jonathan Tedesco, Lyndsi Vanderwal, Shane J. Stafslien, Irina Negut, Anita Visan, Gabriela Dorcioman, Gabriel Socol, Rodica Cristescu, Douglas B. Chrisey, Roger J. Narayan

Article ID: 117
Vol 3, Issue 2, 2017, Article identifier:147-157

VIEWS - 6837 (Abstract) 1250 (PDF)

Abstract


Transdermal delivery of amphotericin B, a pharmacological agent with activity against fungi and parasitic protozoa, is a challenge since amphotericin B exhibits poor solubility in aqueous solutions at physiologic pH values. In this study, we have used a laser-based printing approach known as matrix-assisted pulsed laser evaporation to print amphotericin B on the surfaces of polyglycolic acid microneedles that were prepared using a combination of injection molding and drawing lithography. In a modified agar disk diffusion assay, the amphotericin B-loaded microneedles showed concentrationdependent activity against the yeast Candida albicans. The results of this study suggest that matrix-assisted pulsed laser evaporation may be used to print amphotericin B and other drugs that have complex solubility issues on the surfaces of microneedles.


Keywords


matrix-assisted pulsed laser evaporation; microneedle; amphotericin B; antifungal

Full Text:

Download PDF

Included Database


References


Ostrosky-Zeichner L, Marr K A, Rex J H, et al., 2003, Amphotericin B: time for a new “gold standard”. Clinical Infectious Diseases, vol.37(3): 415–425.

https://dx.doi.org/10.1086/376634

Torrado J J, Espada R, Ballesteros M P, et al., 2008, Amphotericin B formulations and drug targeting. Journal of Pharmaceutical Sciences, vol.97(7): 2405–2425.

https://dx.doi.org/10.1002/jps.21179

Trejo W H and Bennett R E, 1963, Streptomyces nodosus sp. nov., the amphotericin-producing organism. Journal of Bacteriology, vol.85(2): 436–439.

Hamill R J, 2013, Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs, vol.73(9): 919–934.

https://dx.doi.org/10.1007/s40265-013-0069-4

Laniado-Laborin R and Cabrales-Vargas M N, 2009, Amphotericin B: Side effects and toxicity. Revista Iberoamericana de Micología, vol.26(4): 223–227.

https://dx.doi.org/10.1016/j.riam.2009.06.003

Khanna P, Strom J A, Malone J I, et al., 2008, Microneedle-based automated therapy for diabetes mellitus. Journal of Diabetes Science and Technology, vol.2(6): 1122–1129.

https:/dx./doi.org/10.1177/193229680800200621

Baria S H, Gohel M C, Mehta T A, et al., 2011, Microneedles: An emerging transdermal drug delivery system. Journal of Pharmacology and Pharmacotherapeutics, vol.64(1): 11–29.

https://dx.doi.org/10.1111/j.2042-7158.2011.01369.x

Arora A, Prausnitz M R, Mitragotri S, 2008, Micro-scale devices for transdermal drug delivery. International Journal of Pharmaceutics, vol.364(2): 227–236.

https://dx.doi.org/10.1016/j.ijpharm.2008.08.032

Gill H S, Denson D D, Burris B A, et al., 2008, Effect of microneedle design on pain in human volunteers. The Clinical Journal of Pain, vol. 24(7): 585–594.

https://dx.doi.org/10.1097/AJP.0b013e31816778f9

Nahar M, Mishra D, Dubey V, et al., 2008, Development, characterization, and toxicity evaluation of amphotericin B–loaded gelatin nanoparticles. Nanomedicine, vol.4(3): 252–261.

https://dx.doi.org/10.1016/j.nano.2008.03.007

Boehm R D, Miller P R, Schell W A, et al., 2013, Inkjet printing of amphotericin B onto biodegradable microneedles using piezoelectric inkjet printing. JOM, vol.65(4): 525–533.

https://dx.doi.org/10.1007/s11837-013-0574-7

Boehm R D, Daniels J, Stafslien S, et al., 2015, Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings. Biointerphases, vol.10(1): 011004.

https://dx.doi.org/10.1116/1.4913378

Boehm R D. Jaipan P, Skoog S A, et al., 2016, Inkjet deposition of itraconazole onto poly(glycolic acid) microneedle arrays. Biointerphases, vol.11(1): 011008.

http://dx.doi.org/10.1116/1.4941448

Wu P K, Ringeisen B R, Krizman D B, et al., 2003, Laser transfer of biomaterials: Matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE Direct Write. Review of Scientific Instruments, vol.74(4): 2546–2557.

http://dx.doi.org/10.1063/1.1544081

Schmidmaier G, Wildemann B, Stemberger A, et al., 2001, Biodegradable poly(ᴅ,ʟ-Lactide) coating of implants for continuous release of growth factors. Journal of Biomedical Materials Research (Applied Biomaterials), vol.58(4): 449–455.

http://dx.doi.org/10.1002/jbm.1040

Kumar N, Langer R S, Domb A J, 2002, Polyanhydrides: An overview. Advanced Drug Delivery Reviews, vol.54(7): 889–910.

https://dx.doi.org/10.1016/S0169-409X(02)00050-9

Shieh L, Tamada J, Chen I, et al., 1994, Erosion of a new family of biodegradable polyanhydrides. Journal of Biomedical Materials Research, vol.28(12): 1465–1475.

https://dx.doi.org/10.1002/jbm.820281212

Göpferich A and Tessmar, J, 2002, Polyanhydride degradation and erosion. Advanced Drug Delivery Reviews, vol.54(7): 911–931.

https://dx.doi.org/10.1016/S0169-409X(02)00051-0

Patz T M, Doraiswamy A, Narayan R J, et al., 2007, Matrix assisted pulsed laser evaporation of biomaterial thin films. Materials Science and Engineering C, vol.27(3): 514–522.

https://dx.doi.org/10.1016/j.msec.2006.05.039

Iordache F, Grumezescu V, Grumezescu AM, et al., 2015, Gamma-cyclodextrin/usnic acid thin film fabricated by MAPLE for improving the resistance of medical surfaces to Staphylococcus aureus colonization. Applied Surface Science, vol.336(1): 407–412.

https://dx.doi.org/10.1016/j.apsusc.2015.01.081

Cristescu R, Popescu C, Socol G, et al., 2011, Deposition of antibacterial of poly(1,3-bis-(p-carboxyphenoxy propane)-co-(sebacic anhydride)) 20:80/gentamicin sulfate composite coatings by MAPLE. Applied Surface Science, vol.257(12): 5287–5292.

https://dx.doi.org/10.1016/j.apsusc.2010.11.141

Cristescu R, Popescu C, Dorcioman G, et al., 2013, Antimicrobial activity of biopolymer-antibiotic thin films fabricated by advanced pulsed laser methods. Applied Surface Science, vol.278: 211–213.

https://dx.doi.org/10.1016/j.apsusc.2013.01.062

Li X, Gao H, Murphy C J, et al., 2003, Nanoindentation of silver nanowires. Nano Letters, vol.3(11): 1495–1498.

https://dx.doi.org/10.1021/nl034525b

Machekposhti S A, Soltani M, Najafizadeh P, et al., 2017, Biocompatible polymer microneedle for topical/dermal delivery of tranexamic acid, Journal of Controlled Release, vol.261: 87–92.

https://dx.doi.org/10.1016/j.jconrel.2017.06.016

Capriotti K and Capriotti J A, 2015, Onychomycosis treated with a dilute povidone-iodine/dimethyl sulfoxide preparation, International Medical Case Reports Journal, vol.8: 231–3.

https://dx.doi.org/10.2147/IMCRJ.S90775

Piqué A, 2011, The matrix-assisted pulsed laser evaporation (MAPLE) process: Origins and future directions, Applied Physics A, vol.105(3): 517–528.

https://dx.doi.org/10.1007/s00339-011-6594-7

Bubb D M, McGill R A, Horwitz J S, et al., 2001, Laser-based processing of polymer nanocomposites for chemical sensing applications, Journal of Applied Physics, vol.89(10): 5739–5746.

http://dx.doi.org/10.1063/1.1362405

Paun I A, Ion V, Moldovan A, et al., 2012, MAPLE deposition of PEG:PLGA thin films, Applied Physcia A, vol.106(1): 197–205.

http://dx.doi.org/10.1007/s00339-011-6548-0

Jovanović Ž, Radosavljević A, Šiljegović M, et al., 2012, Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by γ-irradiation, Radiation Physics and Chemistry, vol.81(11): 1720–1728.

https://dx.doi.org/10.1016/j.radphyschem.2012.05.019

Majumdar P, Lee E, Gubbins N, et al., 2009, Synthesis and antimicrobial activity of quaternary ammonium-functionalized POSS (Q-POSS) and polysiloxane coatings containing Q-POSS, Polymer, vol.50(5): 1124–1133.

https://dx.doi.org/10.1016/j.polymer.2009.01.009

Narayan R J, Adiga S P, Pellin M J, et al., 2010, Atomic layer deposition of nanoporous biomaterials, Materials Today, vol.13(3): 60–64.

https://dx.doi.org/10.1016/S1369-7021(10)70035-3

Majumdar P, He J, Lee E, et al., 2010, Antimicrobial activity of polysiloxane coatings containing quaternary ammonium-functionalized polyhedral oligomeric silsesquioxane, Journal of Coatings Technology and Research, vol.7(4): 455–467.

https://dx.doi.org/10.1007/s11998-009-9197-x

Kugel A, Chisholm B, Ebert S, et al., 2010, Antimicrobial polysiloxane polymers and coatings containing pendant levofloxacin, Polymer Chemistry, vol.1(4): 442–452.

https://dx.doi.org/10.1039/B9PY00309F

Gittard S D, Ovsianikov A, Monteiro-Riviere N A, et al., 2009, Fabrication of polymer microneedles using a two-photon polymerization and micromolding process. Journal of Diabetes Science and Technology, vol.3(2): 304–311.

https://dx.doi.org/10.1177/193229680900300211

Park J H, Allen M G, Prausnitz M R, 2005, Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. Journal of Controlled Release, vol.104(1): 51–66.

https://dx.doi.org/10.1016/j.jconrel.2005.02.002

Singh P K, Sah P, Meher J G, et al., 2016, Macrophage-targeted chitosan anchored PLGA nanoparticles bearing doxorubicin and amphotericin B against visceral leishmaniasis. RSC Advances, vol.6(75): 71705–71718.

https://dx.doi.org/10.1039/C6RA06007B

Wallace V M, Dhumal N R, Zehentbauer F M, et al., 2015, Revisiting the aqueous solutions of dimethyl sulfoxide by spectroscopy in the mid- and near-infrared: Experiments and Car–Parrinello simulations. Journal of Physical Chemistry B, vol.119(46): 14780–14789.

https://dx.doi.org/10.1021/acs.jpcb.5b09196

Espinel-Ingroff A, Canton E, Fothergill A, et al., 2011, Quality control guidelines for amphotericin B, itraconazole, posaconazole, and voriconazole disk diffusion susceptibility tests with non-supplemented Mueller-Hinton Agar (CLSI M51-A document) for nondermatophyte filamentous fungi. Journal of Clinical Microbiology, vol.49(7): 2568–2572.

https://dx.doi.org/10.1128/JCM.00393-11




DOI: http://dx.doi.org/10.18063/IJB.2017.02.004

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Roger Sachan, Panupong Jaipan, Jennifer Y. Zhang, Simone Degan, Detlev Erdmann, Jonathan Tedesco, Lyndsi Vanderwal, Shane J. Stafslien, Irina Negut, Anita Visan, Gabriela Dorcioman, Gabriel Socol, Rodica Cristescu, Douglas B. Chrisey, Roger J. Narayan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.