Printing amphotericin B on microneedles using matrix-assisted pulsed laser evaporation

VIEWS - 89 (Abstract) 58 (PDF)
Roger Sachan, Panupong Jaipan, Jennifer Y. Zhang, Simone Degan, Detlev Erdmann, Jonathan Tedesco, Lyndsi Vanderwal, Shane J. Stafslien, Irina Negut, Anita Visan, Gabriela Dorcioman, Gabriel Socol, Rodica Cristescu, Douglas B. Chrisey, Roger J. Narayan

Abstract


Transdermal delivery of amphotericin B, a pharmacological agent with activity against fungi and parasitic protozoa, is a challenge since amphotericin B exhibits poor solubility in aqueous solutions at physiologic pH values. In this study, we have used a laser-based printing approach known as matrix-assisted pulsed laser evaporation to print amphotericin B on the surfaces of polyglycolic acid microneedles that were prepared using a combination of injection molding and drawing lithography. In a modified agar disk diffusion assay, the amphotericin B-loaded microneedles showed concentrationdependent activity against the yeast Candida albicans. The results of this study suggest that matrix-assisted pulsed laser evaporation may be used to print amphotericin B and other drugs that have complex solubility issues on the surfaces of microneedles.


Keywords


matrix-assisted pulsed laser evaporation; microneedle; amphotericin B; antifungal

Full Text:

PDF


DOI: http://dx.doi.org/10.18063/IJB.2017.02.004

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Roger Sachan, Panupong Jaipan, Jennifer Y. Zhang, Simone Degan, Detlev Erdmann, Jonathan Tedesco, Lyndsi Vanderwal, Shane J. Stafslien, Irina Negut, Anita Visan, Gabriela Dorcioman, Gabriel Socol, Rodica Cristescu, Douglas B. Chrisey, Roger J. Narayan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Recent Articles | About Journal | For Author | Fees | About Whioce

Copyright © Whioce Publishing Pte Ltd. All Rights Reserved.