Microstereolithography-fabricated microneedles for fluid sampling of histamine-contaminated tuna
Vol 2, Issue 1, 2016, Article identifier:72-80
VIEWS - 2801 (Abstract) 608 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
Arvanitoyannis I S, Kotsanopoulos K V and Papado-poulou A, 2014, Rapid detection of chemical hazards (toxins, dioxins, and PCBs) in seafood. Critical Reviews in Food Science and Nutrition, vol.54(11): 1473–1528.
http://dx.doi.org/10.1080/10408398.2011.641132
Hungerford JM, 2010,Scrombroid poisoning: A review. Toxicon, vol.56(2): 231–243. http://dx.doi.org/10.1016/j.toxicon.2010.02.006
Rawles DD, Flick GJ and Martin RE,1996, Biogenicamines in fish and shellfish. Advances in Food Nutrition Research, vol.39: 329–364.http://dx.doi.org/10.1016/S1043-4526(08)60076-5
Santos MHS, 1996, Biogenic amines: Their importance in foods. International Journal of Food Microbiology, vol.29(2–3): 213–231.http://dx.doi.org/10.1016/0168-1605(95)00032-1
DadákováE, Křížek M and PelikánováT,2009, Determination of biogenic amines in foods using ultra-performance liquid chromatography (UPLC). Food Chemistry, vol.116(1): 365–370. http://dx.doi.org/10.1016/j.foodchem.2009.02.018
Shalaby A R, 1996, Significance of biogenic amines to food safety and human health. Food Research International, vol.29(7): 675–690. http://dx.doi.org/10.1016/S0963-9969(96)00066-X
ÖnalA, 2007, A review: Current analytical methods for the determination of biogenic amines in foods. Food Chemistry, vol.103(4): 1475–1486. http://dx.doi.org/10.1016/j.foodchem.2006.08.028
Lehane L and Olley J,2000, Histamine fish poisoning revisited .International Journal of Food Microbiology, vol.58(1–2): 1–37.http://dx.doi.org/10.1016/S0168-1605(00)00296-8
Prester L,2011,Biogenic amines in fish, fish products and shellfish: A review. Food Additives and Contaminants: Part A, vol.28(11): 1547–1560. http://dx.doi.org/10.1080/19440049.2011.600728
Sapin-Jaloustre H and Sapin-Jaloustre J, 1957, [A little-known food poisoning: Histamine poisoning fromtuna].Concours Médical, vol.79(22): 2705–2708, InFrench, English abstract.
Evangelista W P, Tette P A S and Gloria M B A, 2013, Quality control of the analysis of histamine in fish by proficiency test. Journal of Physics: Conference Series, vol.575: 012035. http://dx.doi.org/10.1088/1742-6596/575/1/012035
Hungerford J and Wu W-H, 2012, Comparison study of three rapid test kits for histamine in fish: BiooScientific MaxSignal enzymatic assay, Neogen Veratox ELISA, and the Neogen Reveal Histamine Screening test. Food Control, vol.25(2): 448–457.http://dx.doi.org/10.1016/j.foodcont.2011.11.007
Posthuma-Trumpie G A, Korf J and van Amerongen A,2009, Lateral flow (immuno)assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Analytical and Bioanalytical Chemistry, vol.393(2): 569–582. http://dx.doi.org/10.1007/s00216-008-2287-2
Čapek P and Dickerson T J, 2010, Sensing the deadliest toxin: Technologies forbotulinum neurotoxin detection. Toxins, vol.2(1): 24–53. http://dx.doi.org/10.3390/toxins2010024
Liao J-Y and Li H, 2010,Lateral flow immunodipstick for visual detection of aflatoxin B1 in food using immune-nanoparticles composed of a silver core and a gold shell. Microchimica Acta, vol.171(3–4): 289–295. http://dx.doi.org/10.1007/s00604-010-0431-0
Nimitphak T, Meemetta W, Arunrut N, et al., 2010, Rapid and sensitive detection of Penaeus monodon nucleopolyhedrovirus (PemoNPV) by loop-mediated isothermal amplification combined with a lateral-flow dipstick. Molecular and cellular probes, vol.24(1): 1–5. http://dx.doi.org/10.1016/j.mcp.2009.09.004
Moon J, Kim, G and Lee S, 2012, A gold nanoparticle and aflatoxin B1-BSA conjugates based lateral flow assay method for the analysis of aflatoxin B1. Materials. vol.5(4): 634–643. http://dx.doi.org/10.3390/ma5040634
Li C G, Lee C Y, Lee K, et al., 2013, An optimized hollow microneedle for minimally invasive blood extraction. Biomedical Microdevices, vol.15(1): 17–25.http://dx.doi.org/10.1007/s10544-012-9683-2
Donnelly R F, Mooney K, Caffarel-Salvador E, et al., 2014, Microneedle-mediated minimally invasive patient monitoring. Therapeutic Drug Monitoring,vol.36(1): 10–17. http://dx.doi.org/10.1097/FTD.0000000000000022
Romanyuk A V, Zvezdin V N, Samant P, et al., 2014, Collection of analytes from microneedle patches. Analytical Chemistry, vol.86(21): 10520–10523. http://dx.doi.org/10.1021/ac503823p
Windmiller J R, Valdés-Ramirez G, Zhou N, et al., 2011, Bicomponent microneedle array biosensor for minimally-invasive glutamate monitoring. Electroanalysis, vol.23(10): 2302–2309. http://dx.doi.org/10.1002/elan.201100361
Sakaguchi K, Hirota Y, Hashimoto N, et al.,2012, A minimally invasive system for glucose area under the curve measurement using interstitial fluid extraction technology: Evaluation of the accuracy and usefulness with oral glucose tolerance tests in subjects with and without diabetes. Diabetes Technology & Therapeutics, vol.14(6): 485–491. http://dx.doi.org/10.1089/dia.2011.0255
Jina A, Tierney M J, Tamada J A, et al., 2014, Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. Journal of Diabetes Science and Technology, vol.8(3): 483–487.
http://dx.doi.org/10.1177/1932296814526191
Miller P R, Xiao X, Brener I, et al., 2014, Microneedle-based transdermal sensor for on-chip potentiometric determination of K(+). Advanced Healthcare Materials, vol.3(6): 876–881. http://dx.doi.org/10.1002/adhm.201300541
Boehm R D, Miller P R, Hayes S L, et al., 2011, Modification of microneedles using inkjet printing. AIP Advances, vol.1(2): 022139. http://dx.doi.org/10.1063/1.3602461
Boehm R D, Miller P R, Singh R, et al., 2012, Indirect rapid prototyping of antibacterial acid anhydride copolymer microneedles. Biofabrication, vol.4(1): 011002. http://dx.doi.org/10.1088/1758-5082/4/1/011002
Boehm R D, Miller P R, Schell W A, et al., 2013, Inkjet printing of amphotericin B onto biodegradable micro-needles using piezoelectric inkjet printing. JOM, vol.65(4): 525–533. http://dx.doi.org/10.1007/s11837-013-0574-7
Boehm R D, Miller P R, Daniels J. et al., 2014, Inkjet printing for pharmaceutical applications. Materials Today, vol.17(5): 247–252. http://dx.doi.org/10.1016/j.mattod.2014.04.027
Miller P R, Gittard S D, Edwards T L. et al., 2011, Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics, vol.5(1): 013415. http://dx.doi.org/10.1063/1.3569945
Technical data 1: EnvisionTEC E-shell® 200 series, viewed October 28, 2015, http://envisiontec.com/envisiontec/wp-content/uploads/MK-MTS-EShell200Series-V01-FN-EN.pdf
Technical data 2: EnvisionTEC Otoflash post curing light flashing unit, viewed October 28, 2015, http://media.envisiontec.com/envisiontec/wp-content/uploads/MK-MCS-Otoflash-V01-FN-EN.pdf
Reveal product information: Reveal® histamine screening test, viewed November 1, 2015, http://www.neogen.com/FoodSafety/pdf/ProdInfo/R-Hist.pdf
DOI: http://dx.doi.org/10.18063/IJB.2016.01.010
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Ryan D. Boehm, Panupong Jaipan, Kai-Hung Yang, Thomas N. Stewart, Roger J. Narayan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.