Investigation of process parameters of electrohydro-dynamic jetting for 3D printed PCL fibrous scaffolds with complex geometries
Vol 2, Issue 1, 2016, Article identifier:63-71
VIEWS - 3122 (Abstract) 754 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
Hutmacher D W, 2001, Scaffold design and fabrication technologies for engineering tissues—state of the art and
future perspectives. Journal of Biomaterials Science, Polymer Edition, vol.12(1): 107–124. http://dx.doi.org/10.1163/156856201744489
Hutmacher D W, Schantz T, Zein I, et al. 2001, Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modelling. Journal of Biomedical Materials Research, vol.55(2): 203–216. http://dx.doi.org/10.1002/1097-4636(200105)55:23.0.CO;2-7
Cukierman E, Pankov R, Stevens D R, et al. 2001, Taking cell-matrix adhesions to the third dimension. Science, vol.294(5547): 1708–1712. http://dx.doi.org/10.1126/science.1064829
Cukierman E, Pankov R and Yamada K M, 2002, Cell interactions with three-dimensional matrices. Current Opinion in Cell Biology, vol.14(5): 633–640. http://dx.doi.org/10.1016/S0955-0674(02)00364-2
Edelman D B and Keefer E W, 2005, A cultural renaissance: in vitro cell biology embraces three- dimensional context. Experimental Neurology, vol.192(1): 1–6. http://dx.doi.org/10.1016/j.expneurol.2004.10.005
Sachlos E and Czernuszka J T, 2003, Making tissue engineering scaffold work: Review on the application of SFF technology to the production of tissue engineering scaffolds. European Cells and Materials, vol.5(1): 29–40.
Whitesides G M, Ostuni E, Takayama S, et al. 2001, Soft lithography in biology and biochemistry. Annual Review of Biomedical Engineering, vol.3(1): 335–373. http://dx.doi.org/10.1146/annurev.bioeng.3.1.335
Walker G M, Zeringue H C and Beebe D J, 2004, Microenvironment design considerations for cellular scale studies. Lab on a Chip, vol.4(2): 91–97. http://dx.doi.org/10.1039/b311214d
Khademhosseini A, Langer R, Borenstein J, et al. 2006, Microscale technologies for tissue engineering and biology. Proceedings of the National Academy of Sciences of the United States of America, vol.103(8): 2480–2487. http://dx.doi.org/10.1073/pnas.0507681102
Lannutti J, Reneker D,Ma T, et al. 2007, Electrospinning for tissue engineering scaffolds. Materials Science and Engineering: C, vol.27(3): 504–509. http://dx.doi.org/10.1016/j.msec.2006.05.019
Agarwal S, Wendorff J H and Greiner A, 2009, Progress in the field of electrospinning for tissue engineering applications. Advanced Materials, vol.21(32–33): 3343– 3351. http://dx.doi.org/10.1002/adma.200803092
LiW J, Laurencin C T, Caterson E J, et al. 2002, Elec-trospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research, vol.60(4): 613–621. http://dx.doi.org/10.1002/jbm.10167
Sill T J and von RecumH A, 2008, Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, vol.29(13): 1989–2006. http://dx.doi.org/10.1016/j.biomaterials.2008.01.011
Yang F,Murugan R,Wang S, et al. 2005, Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomate-rials, vol.26(15): 2603–2610. http://dx.doi.org/10.1016/j.biomaterials.2004.06.051
Richards D J, Tan Y, Jia J, et al. 2013, 3D printing for tissue engineering. Israel Journal of Chemistry, vol.53(9–10): 805–814. http://dx.doi.org/10.1002/ijch.201300086
Mironov V, Boland T, Trusk T, et al. 2003, Organ printing: Computer-aided jet-based 3D tissue engineering. Trends in Biotechnology, vol.21(4): 157–161. http://dx.doi.org/0.1016/S0167-7799(03)00033-7
Hollister S J, 2005, Porous scaffold design for tissue engineering. Nature Materials, vol.4(7): 518–524. http://dx.doi.org/10.1038/nmat1421
Boland T, Xu T, Damon B, et al. 2006, Application of inkjet printing to tissue engineering. Biotechnology Journal, vol.1(9): 910–917. http://dx.doi.org/10.1002/biot.200600081
YeongW Y, ChuaC K, LeongK F, et al. 2004, Rapid prototyping in tissue engineering: Challenges and potential. Trends in Biotechnology, vol.22(12): 643–652. http://dx.doi.org/10.1016/j.tibtech.2004.10.004
An J, Teoh J E M, Suntornnond R, et al. 2015, Design and 3D printing of scaffolds and tissues. Engineering, vol.1(2), 261–268. http://dx.doi.org/10.15302/J-ENG-2015061
Gupta A, Seifalian A M, Ahmad Z, et al. 2007, Novel electrohydrodynamic printing of nanocomposite biopolymer scaffolds. Journal of Bioactive and Compatible Polymers, vol.22(3), 265–280. http://dx.doi.org/10.1177/0883911507078268
Wei C and Dong J, 2013, Direct fabrication of high-resolution three-dimensional polymeric scaffolds using electrohydrodynamic hot jet plotting. Journal of Microme-chanics and Microengineering, vol.23(2): 025017. http://dx.doi.org/10.1088/0960-1317/23/2/025017
Ahmad Z, Rasekh M and Edirisinghe M, 2010, Electrohydrodynamic direct writing of biomedical polymers and composites. Macromolecular Materials and Engineering, vol.295(4): 315–319. http://dx.doi.org/10.1002/mame.200900396
Li J L, Cai Y L, Guo Y L, et al. 2014, Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique. Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.102(4): 651–658. http://dx.doi.org/10.1002/jbm.b.33043
Gasperini L, Maniglio D, Motta A, et al. 2014, An electrohydrodynamic bioprinter for alginate hydrogels containing living cells. Tissue Engineering Part C: Methods, vol.21(2): 123–132. http://dx.doi.org/10.1089/ten.TEC.2014.0149
Cai Y, Li J L, Poh C K, et al. 2013, Collagen grafted 3D polycaprolactone scaffolds for enhanced cartilage regeneration. Journal of Materials Chemistry B, vol.1(43): 5971–5976. http://dx.doi.org/0.1039/C3TB20680G
Doshi J and Reneker D H, 1993, Electrospinning process and applications of electrospun fibers, In Industry Applications Society Annual Meeting, Conference Record of the 1993 IEEE: 1698–1703.
Mitchell G R, AhnK H and Davis F J, 2011, The potential of electrospinning in rapid manufacturing processes. Virtual and Physical Prototyping, vol.6(2): 63–77. http://dx.doi.org/10.1080/17452759.2011.590387
Thompson C J, Chase G G, Yarin A L, et al. 2007, Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer, vol.48(23): 6913– 6922. http://dx.doi.org/10.1016/j.polymer.2007.09.017
Bu N, Huang Y, Wang X, et al. 2012, Continuously tunable and oriented nanofiber direct-written by mechano-electrospinning. Materials and Manufacturing Processes, vol.27(12): 1318–1323. http://dx.doi.org/10.1080/10426914.2012.700145
Chanthakulchan A, Koomsap P, Auyson K, et al. 2015, Development of an electrospinning-based rapid proto-typing for scaffold fabrication. Rapid Prototyping Jour-nal, vol.21(3): 329–339. http://dx.doi.org/10.1108/RPJ-11-2013-0119
Auyson K, Koomsap P, Chanthakulchan A, et al. 2013, Investigation of applying electrospinning in fused deposition modeling for scaffold fabrication. In High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping, Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping, CRC Press: 149.
Bisht G S, Canton G, Mirsepassi A, et al. 2011, Controlled continuous patterning of polymeric nanofibers on three-dimensional substrates using low-voltage near-field Electrospinning. Nano Letters, vol.11(4): 1831–1837. http://dx.doi.org/10.1021/nl2006164
Chang C, Limkrailassiri K and Lin L, 2008, Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Applied Physics Letters, vol.93(12): 123111. http://dx.doi.org/10.1063/1.2975834
Li J L, Guo Y L, Thian E S, et al. 2013, 3-Dimensional meniscal fibrillar scaffolds, apparatus and process for the fabrication thereof, UK Patent filing, 2013. Application No. 1315074.3
DOI: http://dx.doi.org/10.18063/IJB.2016.01.005
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Hui Wang, Sanjairaj Vijayavenkataraman, Yang Wu, Zhen Shu, Jie Sun, Jerry Fuh Ying Hsi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.