Smart hydrogels for 3D bioprinting

VIEWS - 3483 (Abstract) 2335 (PDF)
Shuai Wang, Jia Min Lee, Wai Yee Yeong


Hydrogels are 3D networks that have a high water content. They have been widely used as cell carriers and scaffolds in tissue engineering due to their structural similarities to the natural extracellular matrix. Among these, smart hydrogels refer to a group of hydrogels that is responsive to various external stimuli such as pH, temperature, light, electric, and magnetic field. Combining the potential of 3D printing and smart hydrogels is an exciting new paradigm in the fabrication of a functional 3D tissue. In this article, we provide a state-of-the-art review on smart hydrogels and bioprinting. We identify the critical material properties needed for the most commonly used bioprinting techniques, namely extrusion-based, inkjet-based, and laser-based techniques. The latest progress in different smart hydrogel systems and their applications in bioprinting are presented. The challenges of printing these hydrogel systems are also highlighted. Lastly, we present the potentials and the future perspectives of smart hydrogels in 3D bioprinting.


hydrogel; bioprinting; 3D printing; addictive manufacturing; rapid prototyping; tissue engineering

Full Text:



Guillemot, F.; Mironov, V.; Nakamura, M. 2010, Bioprinting is coming of age: report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09). Biofabrication Vol. 2.

Seol, Y.-J.; Kang, H.-W.; Lee, S. J.; Atala, A.; Yoo, J. J. 2014, Bioprinting technology and its applications. European Journal of Cardio-Thoracic Surgery Vol. 46: 342-348.

Seliktar, D.; Dikovsky, D.; Napadensky, E. 2013, Bioprinting and Tissue Engineering: Recent Advances and Future Perspectives. Israel Journal of Chemistry Vol. 53: 795-804.

Bajaj, P.; Schweller, R. M.; Khademhosseini, A.; West, J. L.; Bashir, R. 2014, 3D Biofabrication Strategies for Tissue Engineering and Regenerative Medicine. Annual Review of Biomedical Engineering, Vol 16 Vol. 16: 247-276.

Murphy, S. V.; Atala, A. 2014, 3D bioprinting of tissues and organs. Nature Biotechnology Vol. 32: 773-785.

Arafat, M. T.; Gibson, I.; Li, X. 2014, State of the art and future direction of additive manufactured scaffolds-based bone tissue engineering. Rapid Prototyping Journal Vol. 20: 13-26.

Castilho, M.; Moseke, C.; Ewald, A.; Gbureck, U.; Groll, J.; Pires, I.; Tessmar, J.; Vorndran, E. 2014, Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication Vol. 6.

Cox, S. C.; Thornby, J. A.; Gibbons, G. J.; Williams, M. A.; Mallick, K. K. 2015, 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Materials Science & Engineering C-Materials for Biological Applications Vol. 47: 237-247.

Tasoglu, S.; Demirci, U. 2013, Bioprinting for stem cell research. Trends Biotechnol Vol. 31: 10-9.

Wang, C.; Tang, Z.; Zhao, Y.; Yao, R.; Li, L.; Sun, W. 2014, Three-dimensional in vitro cancer models: a short review. Biofabrication Vol. 6.

Chang, R.; Nam, Y.; Sun, W. 2008, Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Engineering Part C-Methods Vol. 14: 157-166.

Horváth, L.; Umehara, Y.; Jud, C.; Blank, F.; Petri-Fink, A.; Rothen-Rutishauser, B. 2015, Engineering an in vitro air-blood barrier by 3D bioprinting. Sci. Rep. Vol. 5.

Wang, S.; Wang, Z.; Foo, S. E. M.; Nguan Soon, T.; Yuan, Y.; Lin, W.; Zhang, Z.; Ng, K. W. 2015, Culturing Fibroblasts in 3D Human Hair Keratin Hydrogels. Acs Applied Materials & Interfaces Vol. 7: 5187-5198.

Wang, S.; Taraballi, F.; Tan, L. P.; Ng, K. W. 2012, Human keratin hydrogels support fibroblast attachment and proliferation in vitro. Cell and Tissue Research Vol. 347: 795-802.

Galler, K. M.; Hartgerink, J. D.; Cavender, A. C.; Schmalz, G.; D'Souza, R. N. 2012, A Customized Self-Assembling Peptide Hydrogel for Dental Pulp Tissue Engineering. Tissue Engineering Part A Vol. 18: 176-184.

Kundu, B.; Kundu, S. C. 2012, Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction. Biomaterials Vol. 33: 7456-7467.

Rustad, K. C.; Wong, V. W.; Sorkin, M.; Glotzbach, J. P.; Major, M. R.; Rajadas, J.; Longaker, M. T.; Gurtner, G. C. 2012, Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials Vol. 33: 80-90.

Chang, C.; Duan, B.; Cai, J.; Zhang, L. 2010, Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European Polymer Journal Vol. 46: 92-100.

Syrett, J. A.; Becer, C. R.; Haddleton, D. M. 2010, Self-healing and self-mendable polymers. Polymer Chemistry Vol. 1: 978-987.

Hoffman, A. S. 2013, Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Advanced Drug Delivery Reviews Vol. 65: 10-16.

Jochum, F. D.; Theato, P. 2013, Temperature- and light-responsive smart polymer materials. Chemical Society Reviews Vol. 42: 7468-7483.

Lee, J.; Cuddihy, M. J.; Kotov, N. A. 2008, Three-dimensional cell culture matrices: State of the art. Tissue Engineering Part B-Reviews Vol. 14: 61-86.

Adachi, T.; Osako, Y.; Tanaka, M.; Hojo, M.; Hollister, S. J. 2006, Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials Vol. 27: 3964-3972.

Wu, S.; Liu, X.; Yeung, K. W. K.; Liu, C.; Yang, X. 2014, Biomimetic porous scaffolds for bone tissue engineering. Materials Science & Engineering R-Reports Vol. 80: 1-36.

Hannachi, I. E.; Itoga, K.; Kumashiro, Y.; Kobayashi, J.; Yamato, M.; Okano, T. 2009, Fabrication of transferable micropatterned-co-cultured cell sheets with microcontact printing. Biomaterials Vol. 30: 5427-5432.

Cohen, D. L.; Malone, E.; Lipson, H.; Bonassar, L. J. 2006, Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Engineering Vol. 12: 1325-1335.

Smith, C. M.; Stone, A. L.; Parkhill, R. L.; Stewart, R. L.; Simpkins, M. W.; Kachurin, A. M.; Warren, W. L.; Williams, S. K. 2004, Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Engineering Vol. 10: 1566-1576.

Smith, C. M.; Christian, J. J.; Warren, W. L.; Williams, S. K. 2007, Characterizing environmental factors that impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly tool. Tissue Engineering Vol. 13: 373-383.

Wang, X. H.; Yan, Y. N.; Pan, Y. Q.; Xiong, Z.; Liu, H. X.; Cheng, B.; Liu, F.; Lin, F.; Wu, R. D.; Zhang, R. J.; Lu, Q. P. 2006, Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Engineering Vol. 12: 83-90.

Fedorovich, N. E.; Dewijn, J. R.; Verbout, A. J.; Alblas, J.; Dhert, W. J. A. 2008, Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Engineering Part A Vol. 14: 127-133.

Kelm, J. M.; Fussenegger, M. 2004, Microscale tissue engineering using gravity-enforced cell assembly. Trends in Biotechnology Vol. 22: 195-202.

Visser, J.; Peters, B.; Burger, T. J.; Boomstra, J.; Dhert, W. J.; Melchels, F. P.; Malda, J. 2013, Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication Vol. 5: 035007.

Billiet, T.; Gevaert, E.; De Schryver, T.; Cornelissen, M.; Dubruel, P. 2014, The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials Vol. 35: 49-62.

Xu, T.; Zhao, W.; Zhu, J. M.; Albanna, M. Z.; Yoo, J. J.; Atala, A. 2013, Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials Vol. 34: 130-9.

Abeyewickreme, A.; Kwok, A.; McEwan, J. R.; Jayasinghe, S. N. 2009, Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency. Integrative Biology Vol. 1: 260-266.

Fang, Y.; Frampton, J. P.; Raghavan, S.; Sabahi-Kaviani, R.; Luker, G.; Deng, C. X.; Takayama, S. 2012, Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng Part C Methods Vol. 18: 647-57.

Michael, S.; Sorg, H.; Peck, C. T.; Koch, L.; Deiwick, A.; Chichkov, B.; Vogt, P. M.; Reimers, K. 2013, Tissue Engineered Skin Substitutes Created by Laser-Assisted Bioprinting Form Skin-Like Structures in the Dorsal Skin Fold Chamber in Mice. Plos One Vol. 8.

Soman, P.; Chung, P. H.; Zhang, A. P.; Chen, S. C. 2013, Digital Microfabrication of User-Defined 3D Microstructures in Cell-Laden Hydrogels. Biotechnology and Bioengineering Vol. 110: 3038-3047.

Okuda, S.; Inoue, Y.; Eiraku, M.; Adachi, T.; Sasai, Y. 2015, Vertex dynamics simulations of viscosity-dependent deformation during tissue morphogenesis. Biomechanics and Modeling in Mechanobiology Vol. 14: 413-425.

Duan, B.; Hockaday, L. A.; Kang, K. H.; Butcher, J. T. 2013, 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A Vol. 101: 1255-64.

Shim, J.-H.; Lee, J.-S.; Kim, J. Y.; Cho, D.-W. 2012, Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. Journal of Micromechanics and Microengineering Vol. 22: 085014.

Nishiyama, Y.; Nakamura, M.; Henmi, C.; Yamaguchi, K.; Mochizuki, S.; Nakagawa, H.; Takiura, K. 2008, Development of a Three-Dimensional Bioprinter: Construction of Cell Supporting Structures Using Hydrogel and State-Of-The-Art Inkjet Technology. Journal of Biomechanical Engineering Vol. 131: 035001-035001.

Hill, P. S.; Apel, P. J.; Barnwell, J.; Smith, T.; Koman, L. A.; Atala, A.; Van Dyke, M. 2011, Repair of Peripheral Nerve Defects in Rabbits Using Keratin Hydrogel Scaffolds. Tissue Engineering Part A Vol. 17: 1499-1505.

Cui, X. F.; Boland, T. 2009, Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials Vol. 30: 6221-6227.

Guillemot, F.; Guillotin, B.; Fontaine, A.; Ali, M.; Catros, S.; Keriquel, V.; Fricain, J. C.; Remy, M.; Bareille, R.; Amedee-Vilamitjana, J. 2011, Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine. Mrs Bulletin Vol. 36: 1015-1019.

Bertassoni, L. E.; Cardoso, J. C.; Manoharan, V.; Cristino, A. L.; Bhise, N. S.; Araujo, W. A.; Zorlutuna, P.; Vrana, N. E.; Ghaemmaghami, A. M.; Dokmeci, M. R.; Khademhosseini, A. 2014, Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication Vol. 6.

Chang, C. C.; Boland, E. D.; Williams, S. K.; Hoying, J. B. 2011, Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. Journal of Biomedical Materials Research Part B-Applied Biomaterials Vol. 98B: 160-170.

Kim, J. D.; Choi, J. S.; Kim, B. S.; Choi, Y. C.; Cho, Y. W. 2010, Piezoelectric inkjet printing of polymers: Stem cell patterning on polymer substrates. Polymer Vol. 51: 2147-2154.

Song, S.-J.; Choi, J.; Park, Y.-D.; Lee, J.-J.; Hong, S. Y.; Sun, K. 2010, A Three-Dimensional Bioprinting System for Use With a Hydrogel-Based Biomaterial and Printing Parameter Characterization. Artificial Organs Vol. 34: 1044-1048.

Peppas, N. A.; Bures, P.; Leobandung, W.; Ichikawa, H. 2000, Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics Vol. 50: 27-46.

Minh Khanh, N.; Lee, D. S. 2010, Injectable Biodegradable Hydrogels. Macromolecular Bioscience Vol. 10: 563-579.

Bushetti, S. S.; Singh, V.; Raju, S. A.; Atharjaved; Veermaram 2009, Stimuli Sensitive Hydrogels: A Review. Indian Journal of Pharmaceutical Education and Research Vol. 43: 241-250.

Singh, N. K.; Lee, D. S. 2014, In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. Journal of Controlled Release Vol. 193: 214-227.

Roth, E. A.; Xu, T.; Das, M.; Gregory, C.; Hickman, J. J.; Boland, T. 2004, Inkjet printing for high-throughput cell patterning. Biomaterials Vol. 25: 3707-3715.

Lee, V.; Singh, G.; Trasatti, J. P.; Bjornsson, C.; Xu, X.; Thanh Nga, T.; Yoo, S.-S.; Dai, G.; Karande, P. 2014, Design and Fabrication of Human Skin by Three-Dimensional Bioprinting. Tissue Engineering Part C-Methods Vol. 20: 473-484.

Park, J. Y.; Choi, J.-C.; Shim, J.-H.; Lee, J.-S.; Park, H.; Kim, S. W.; Doh, J.; Cho, D.-W. 2014, A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication Vol. 6.

Koch, L.; Deiwick, A.; Schlie, S.; Michael, S.; Gruene, M.; Coger, V.; Zychlinski, D.; Schambach, A.; Reimers, K.; Vogt, P. M.; Chichkov, B. 2012, Skin tissue generation by laser cell printing. Biotechnology and Bioengineering Vol. 109: 1855-1863.

Rouse, J. G.; Van Dyke, M. E. 2010, A Review of Keratin-Based Biomaterials for Biomedical Applications. Materials Vol. 3: 999-1014.

Wang, S.; Taraballi, F.; Tan, L.; Ng, K. 2012, Human keratin hydrogels support fibroblast attachment and proliferation in vitro. Cell and Tissue Research Vol. 347: 795-802.

Szeverenyi, I.; Cassidy, A. J.; Chung, C. W.; Lee, B. T.; Common, J. E. A.; Ogg, S. C.; Chen, H.; Sim, S. Y.; Goh, W. L. R.; Ng, K. W.; Simpson, J. A.; Chee, L. L.; Eng, G. H.; Li, B.; Lunny, D. P.; Chuon, D.; Venkatesh, A.; Khoo, K. H.; McLean, W. H. I.; Lim, Y. P.; Lane, E. B. 2008, The human intermediate filament database: Comprehensive information on a gene family involved in many human diseases. Human Mutation Vol. 29: 351-360.

Makarem, R.; Humphries, M. J. 1991, LDV: A novel cell adhesion motif recognized by the integrin alpha 4 beta 1. Biochemical Society transactions Vol. 19: 380S-382S.

Verma, V.; Verma, P.; Ray, P.; Ray, A. R. 2008, Preparation of scaffolds from human hair proteins for tissue-engineering applications. Biomedical Materials Vol. 3: 12.

Joo, M. K.; Park, M. H.; Choi, B. G.; Jeong, B. 2009, Reverse thermogelling biodegradable polymer aqueous solutions. Journal of Materials Chemistry Vol. 19: 5891-5905.

Yu, L.; Ding, J. 2008, Injectable hydrogels as unique biomedical materials. Chemical Society Reviews Vol. 37: 1473-1481.

Loh, X. J.; Li, J. 2007, Biodegradable thermosensitive copolymer hydrogels for drug delivery. Expert Opinion on Therapeutic Patents Vol. 17: 965-977.

Kretlow, J. D.; Klouda, L.; Mikos, A. G. 2007, Injectable matrices and scaffolds for drug delivery in tissue engineering. Advanced Drug Delivery Reviews Vol. 59: 263-273.

Geever, L.; Cooney, C.; Devine, D.; Devery, S.; Nugent, M.; Higginbotham, C. 2008, Negative Temperature Sensitive Hydrogels in Controlled Drug Delivery. Macromolecular Symposia Vol. 266: 53-58.

Cirillo, G.; Spataro, T.; Curcio, M.; Spizzirri, U. G.; Nicoletta, F. P.; Picci, N.; Iemma, F. 2015, Tunable thermo-responsive hydrogels: Synthesis, structural analysis and drug release studies. Materials Science and Engineering: C Vol. 48: 499-510.

Censi, R.; Schuurman, W.; Malda, J.; di Dato, G.; Burgisser, P. E.; Dhert, W. J. A.; van Nostrum, C. F.; di Martino, P.; Vermonden, T.; Hennink, W. E. 2011, A Printable Photopolymerizable Thermosensitive p(HPMAm-lactate)-PEG Hydrogel for Tissue Engineering. Advanced Functional Materials Vol. 21: 1833-1842.

Yoon, J. J.; Chung, H. J.; Park, T. G. 2007, Photo-crosslinkable and biodegradable pluronic/heparin hydrogels for local and sustained delivery of angiogenic growth factor. Journal of Biomedical Materials Research Part A Vol. 83A: 597-605.

Escobar-Chavez, J. J.; Lopez-Cervantes, M.; Naik, A.; Kalia, Y. N.; Quintanar-Guerrero, D.; Ganem-Quintanar, A. 2006, Applications of thermoreversible pluronic F-127 gels in pharmaceutical formulations. Journal of Pharmacy and Pharmaceutical Sciences Vol. 9: 339-358.

Mueller, M.; Becher, J.; Schnabelrauch, M.; Zenobi-Wong, M. 2013, Printing Thermoresponsive Reverse Molds for the Creation of Patterned Two-component Hydrogels for 3D Cell Culture. Jove-Journal of Visualized Experiments Vol.

Kolesky, D. B.; Truby, R. L.; Gladman, A. S.; Busbee, T. A.; Homan, K. A.; Lewis, J. A. 2014, 3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs. Advanced Materials Vol. 26: 3124-3130.

Schmedlen, K. H.; Masters, K. S.; West, J. L. 2002, Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials Vol. 23: 4325-4332.

Ifkovits, J. L.; Burdick, J. A. 2007, Review: Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Engineering Vol. 13: 2369-2385.

Nguyen, K. T.; West, J. L. 2002, Photopolymerizable hydrogels for tissue engineering applications. Biomaterials Vol. 23: 4307-4314.

Liu, V. A.; Bhatia, S. N. 2002, Three-dimensional photopatterning of hydrogels containing living cells. Biomedical Microdevices Vol. 4: 257-266.

Nichol, J. W.; Koshy, S. T.; Bae, H.; Hwang, C. M.; Yamanlar, S.; Khademhosseini, A. 2010, Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials Vol. 31: 5536-5544.

Torgersen, J.; Qin, X.-H.; Li, Z.; Ovsianikov, A.; Liska, R.; Stampfl, J. 2013, Hydrogels for Two-Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix. Advanced Functional Materials Vol. 23: 4542-4554.

Skardal, A.; Zhang, J.; McCoard, L.; Xu, X.; Oottamasathien, S.; Prestwich, G. D. 2010, Photocrosslinkable Hyaluronan-Gelatin Hydrogels for Two-Step Bioprinting. Tissue Engineering Part A Vol. 16: 2675-2685.

Xiao, W.; He, J.; Nichol, J. W.; Wang, L.; Hutson, C. B.; Wang, B.; Du, Y.; Fan, H.; Khademhosseini, A. 2011, Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta Biomaterialia Vol. 7: 2384-2393.

Shin, H.; Olsen, B. D.; Khademhosseini, A. 2012, The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials Vol. 33: 3143-3152.

Jackson, N.; Stam, F. 2015, Optimization of electrical stimulation parameters for electro-responsive hydrogels for biomedical applications. Journal of Applied Polymer Science Vol. 132.

Adesanya, K.; Vanderleyden, E.; Embrechts, A.; Glazer, P.; Mendes, E.; Dubruel, P. 2014, Properties of Electrically Responsive Hydrogels as a Potential Dynamic Tool for Biomedical Applications. Journal of Applied Polymer Science Vol. 131.

Attaran, A.; Brummund, J.; Wallmersperger, T. 2015, Modeling and simulation of the bending behavior of electrically-stimulated cantilevered hydrogels. Smart Materials and Structures Vol. 24.

Boruah, M.; Mili, M.; Sharma, S.; Gogoi, B.; Dolui, S. K. 2015, Synthesis and Evaluation of Swelling Kinetics of Electric Field Responsive Poly(vinyl alcohol)-g-polyacrylic acid/OMNT Nanocomposite Hydrogels. Polymer Composites Vol. 36: 34-41.

Taghizadeh, B.; Taranejoo, S.; Monemian, S. A.; Moghaddam, Z. S.; Daliri, K.; Derakhshankhah, H.; Derakhshani, Z. 2015, Classification of stimuli-responsive polymers as anticancer drug delivery systems. Drug Delivery Vol. 22: 145-155.

Zhang, H.; Li, J.; Cui, H.; Li, H.; Yang, F. 2015, Forward osmosis using electric-responsive polymer hydrogels as draw agents: Influence of freezing-thawing cycles, voltage, feed solutions on process performance. Chemical Engineering Journal Vol. 259: 814-819.

Kulkarni, R. V.; Biswanath, S. A. 2007, Electrically responsive smart hydrogels in drug delivery: a review. Journal of Applied Biomaterials & Biomechanics Vol. 5: 125-139.

Sawahata, K.; Hara, M.; Yasunaga, H.; Osada, Y. 1990, ELECTRICALLY CONTROLLED DRUG DELIVERY SYSTEM USING POLYELECTROLYTE GELS. Journal of Controlled Release Vol. 14: 253-262.

Giani, G.; Fedi, S.; Barbucci, R. 2012, Hybrid Magnetic Hydrogel: A Potential System for Controlled Drug Delivery by Means of Alternating Magnetic Fields. Polymers Vol. 4: 1157-1169.

Asa'di, S.; Frounchi, M.; Dadbin, S., Nano-magnetic Poly (vinyl alcohol) Hydrogels. In Ultrafine Grained and Nano-Structured Materials Iv, Parsa, M. H., Ed. 2014; Vol. 829, pp 539-543.

Li, Z.; Shen, J.; Ma, H.; Lu, X.; Shi, M.; Li, N.; Ye, M. 2012, Preparation and characterization of sodium alginate/poly(N-isopropylacrylamide)/clay semi-IPN magnetic hydrogels. Polymer Bulletin Vol. 68: 1153-1169.

Toth, I. Y.; Veress, G.; Szekeres, M.; Illes, E.; Tombacz, E. 2015, Magnetic hyaluronate hydrogels: preparation and characterization. Journal of Magnetism and Magnetic Materials Vol. 380: 175-180.

Mahdavinia, G. R.; Etemadi, H. 2014, In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release. Materials Science & Engineering C-Materials for Biological Applications Vol. 45: 250-260.

Szabo, D.; Czako-Nagy, I.; Zrinyi, M.; Vertes, A. 2000, Magnetic and Mossbauer studies of magnetite-loaded polyvinyl alcohol hydrogels. Journal of Colloid and Interface Science Vol. 221: 166-172.

Li, Y.; Huang, G.; Zhang, X.; Li, B.; Chen, Y.; Lu, T.; Lu, T. J.; Xu, F. 2013, Magnetic Hydrogels and Their Potential Biomedical Applications. Advanced Functional Materials Vol. 23: 660-672.

Ng, S. S.; Li, C.; Chan, V., Experimental and numerical determination of cellular traction force on polymeric hydrogels. 2011; Vol. 1, p 777-791.

Manzano, S.; Moreno-Loshuertos, R.; Doblaré, M.; Ochoa, I.; Doweidar, M. H. 2015, Structural biology response of a collagen hydrogel synthetic extracellular matrix with embedded human fibroblast: computational and experimental analysis. Medical & biological engineering & computing Vol.: 1-15.

Zhang, H.; Dai, S.; Bi, J.; Liu, K.-K. 2011, Biomimetic three-dimensional microenvironment for controlling stem cell fate. Interface Focus Vol. 1: 792-803.

Kazimierska-Drobny, K.; El Fray, M.; Kaczmarek, M. 2015, Determination of mechanical and hydraulic properties of PVA hydrogels. Materials Science & Engineering C-Materials for Biological Applications Vol. 48: 48-54.

Credi, C.; Biella, S.; De Marco, C.; Levi, M.; Suriano, R.; Turri, S. 2014, Fine tuning and measurement of mechanical properties of crosslinked hyaluronic acid hydrogels as biomimetic scaffold coating in regenerative medicine. Journal of the Mechanical Behavior of Biomedical Materials Vol. 29: 309-316.

Melzak, K. A.; Mateescu, A.; Toca-Herrera, J. L.; Jonas, U. 2012, Simultaneous Measurement of Mechanical and Surface Properties in Thermoresponsive, Anchored Hydrogel Films. Langmuir Vol. 28: 12871-12878.

Kesti, M.; Mueller, M.; Becher, J.; Schnabelrauch, M.; D'Este, M.; Eglin, D.; Zenobi-Wong, M. 2015, A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomaterialia Vol. 11: 162-172.

Stoychev, G.; Puretskiy, N.; Ionov, L. 2011, Self-folding all-polymer thermoresponsive microcapsules. Soft Matter Vol. 7: 3277-3279.

Jamal, M.; Kadam, S. S.; Xiao, R.; Jivan, F.; Onn, T. M.; Fernandes, R.; Nguyen, T. D.; Gracias, D. H. 2013, Bio-Origami Hydrogel Scaffolds Composed of Photocrosslinked PEG Bilayers. Advanced Healthcare Materials Vol. 2: 1142-1150.



  • There are currently no refbacks.

Copyright (c) 2017 Shuai Wang, Jia Min Lee, Wai Yee Yeong

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Recent Articles | About Journal | For Author | Fees | About Whioce

Copyright © Whioce Publishing Pte Ltd. All Rights Reserved.