Welcome to the year of 2016!

Since last July when the first issue of *International Journal of Bioprinting* (IJB) was successfully launched, five new international editorial board members have joined us, including Dr. Aleksandr Ovsianikov (Vienna University of Technology, Austria), Dr. Giovanni Vozzi (University of Pisa, Italy), Dr. Boris N. Chickkov (Laser Zentrum Hannover e.V., Germany), Dr. Peter Dubruel (Universiteit Gent, Belgium) and Dr. Ali Khademhosseini (Harvard Medical School, USA). The total number of board members has increased to 24 (see Figure 1) in half a year, but I hope that this great team will continue to grow to 30 or more within this year.

International Bioprinting Congress (IBC) is an annual international conference event focusing on the latest status and development of bioprinting. Singapore has hosted the first and second IBC in the past two years. This year, IBC will change its name to “Bioprinting and 3D Printing in the Life Sciences”, to reflect an increased coverage of scope, such as biomedical engineering and tissue engineering. The new conference will be held in Singapore on 21–22 July, 2016. For details and registration, please go to the website shown in brackets (http://selectbiosciences.com/conferences/index.aspx?conf=BI03D). We welcome all to come to Singapore to join our discussions on bioprinting and 3D printing in the life sciences.

Last but not least, I am pleased to present the second issue of IJB. This second issue includes one perspective, two reviews, six original research articles and one project report. In the first article, An et al. discussed the early forms of 4D bioprinting and proposed a definition to unify distinct approaches[1]. Mehrban et al. reviewed the role of bioprinting in tissue engineering, with a special focus on bioprinting of stem cell-laden hydrogels[2]. Sánchez-Salcedo et al. reviewed and analysed the issue of bacterial adhesion in bioprinted 3D scaffolds[3]. In research, Tse et al. reported a wax-based inkjet printing method which could guide cells to grow into complex patterns[4]. Koudan et al. studied how tissue spheroids patterns responded to a nanofibrous substrate[5]. Ng et al. developed a new hydrogel system for bioprinting a better skin tissue[6]. Wang et al. reported an interesting bioprinting method to generate fibrous scaffolds with extremely complex geometries[7]. Boehm et al. reported a bioprinted microneedle system for an easy and quick detection of fluid samples from histamine-con-
taminated tuna[8]. Leong et al. reported a simple and efficient method for making 3D nanofibrous scaffolds[9]. Finally, Bibb et al. presented a detailed report on the European ArtiVasc 3D project and discussed the successes and lessons that had been learnt[10].

References

 http://dx.doi.org/10.18063/IJB.2016.01.003

 http://dx.doi.org/10.18063/IJB.2016.01.006

 http://dx.doi.org/10.18063/IJB.2016.01.008

 http://dx.doi.org/10.18063/IJB.2016.01.001

 http://dx.doi.org/10.18063/IJB.2016.01.007

 http://dx.doi.org/10.18063/IJB.2016.01.009

 http://dx.doi.org/10.18063/IJB.2016.01.005

 http://dx.doi.org/10.18063/IJB.2016.01.010

 http://dx.doi.org/10.18063/IJB.2016.01.002

 http://dx.doi.org/10.18063/IJB.2016.01.004