ISSN: 2424-8002 (Online)

ISSN: 2424-7723 (Print)

Journal Abbreviation: Int J Bioprint

Publication Frequency: Quarterly

Article Processing Charges (APC): Click here for more details

Publishing Model: Open Access

Journal no: 10P

(In progress)

Table of Contents

Original Articles

by Linzhi Jing, Jie Sun, Hang Liu, Xiang Wang, Dejian Huang
311 Views, 131 PDF Downloads

Electrohydrodynamic printing (EHDP) is capable of fabricating micro- to nano-scale fibrous scaffolds for three-dimensional (3D) cell cultures and tissue engineering applications. One of the major bottlenecks that limits the widespread EHDP is the lack of biomaterial ink solutions with tunable mechanical, chemical, and biological properties. In this work, we blend plant protein nanoparticles with synthetic polymer poly(ε-caprolactone) (PCL) to develop composite biomaterial inks, such as PCL/gliadin and PCL/zein for EHDP scaffold fabrication. The tensile test results showed that the composite materials with a relatively small amount of plant protein nanoparticles, such as PCL/gliadin-10, PCL/zein-10 can significantly increase both Young’s modulus and yield stress of the fabricated scaffolds. These scaffolds are further evaluated by culturing mouse embryonic fibroblasts (NIH/3T3) cells, and proven to enhance cell adhesion and proliferation, apart from temporary inhibition effects for PCL/gliadin-20 scaffold at the initial growth stage. After these plant protein nanoparticles are gradually released into culture medium, the generated nanoporous structures on the scaffolds are also favorable to cellular attachment, migration, and proliferation. As competent candidates to upregulate cell biological behaviors in 3D microenvironment, such composite scaffolds manifest a great potential in drug screening and 3D in vitro model development.     


Original Articles

by Bin Xie, Ming-Chun Zhao, Rong Xu, Ying-Chao Zhao, Deng-Feng Yin, Chengde Gao, Andrej Atrens
290 Views, 46 PDF Downloads

An antibacterial biomedical Mg alloy was designed to have a low biodegradation rate. ZK30-0.2Cu-xMn (x = 0, 0.4, 0.8, 1.2, and 1.6 wt.%) was produced by selective laser melting (SLM). Alloying with Mn had a significant influence on the grain size, hardness, and biodegradation rate. Increasing Mg content to 0.8 wt% decreased the biodegradation rate, attributed to the decreased grain size and the relatively protective manganese surface oxide layer. Higher Mn contents increased the biodegradation rate attributed to the presence of the Mn-rich particles. ZK30-0.2Cu-0.8Mn exhibited the lowest biodegradation rate, strong antibacterial performance and good cytocompatibility.


Original Articles

by Marlon Wesley Machado Cunico
211 Views, 26 PDF Downloads

Dental prosthesis and restoration technologies have been developed in the past years. Despite the advantages of additive manufacturing, computer-aided design, and computer-aided manufacturing technologies are still the dominant type of method for fabricating prostheses. Therefore, the main goal of this study is to assess the feasibility of using indirect fused deposition modeling to fabricate dental prosthesis made of ZrSiO4-glass composites. To achieve this goal, filaments were filled by 90% of ZrSiO4 and 50 μm glass spheres to fabricate prosthesis. Multivariable approach was applied to evaluate the feasibility of the proposed method. Holding temperature, holding time, heating rate, and cooling rate were considered the control factors, while shrinkage, flexural strength, and process feasibility were the study responses. In addition, the flexural strength of materials was found between 25 and 85 MPa, while shrinkage fluctuated between 10 and 25%.


Original Articles

by Chuanchuan Zheng, Shokouh Attarilar, Kai Li, Chong Wang, Jia Liu, Liqiang Wang, Junlin Yang, Yujin Tang
27 Views, 5 PDF Downloads

In this study, a β-tricalcium phosphate (β-TCP)/poly (lactic-co-glycolic acid) (PLGA) bone tissue scaffold was loaded with osteogenesis-promoting drug HA15 and constructed by three-dimensional (3D) printing technology. This drug delivery system with favorable biomechanical properties, bone conduction function, and local release of osteogenic drugs could provide the basis for the treatment of bone defects. The biomechanical properties of the scaffold were investigated by compressive testing, showing comparable biomechanical properties with cancellous bone tissue. Furthermore, the microstructure, pore morphology, and condition were studied. Moreover, the drug release concentration, the effect of anti-tuberculosis drugs in vitro and in rabbit radial defects, and the ability of the scaffold to repair the defects were studied. The results show that the scaffold loaded with HA15 can promote cell differentiation into osteoblasts in vitro, targeting HSPA5. The micro-computed tomography scans showed that after 12 weeks of scaffold implantation, the defect of the rabbit radius was repaired and the peripheral blood vessels were regenerated. Thus, HA15 can target HSPA5 to inhibit endoplasmic reticulum stress which finally leads to promotion of osteogenesis, bone regeneration, and angiogenesis in the rabbit bone defect model. Overall, the 3D-printed β-TCP/PLGA-loaded HA15 bone tissue scaffold can be used as a substitute material for the treatment of bone defects because of its unique biomechanical properties and bone conductivity.


Review Articles

by Yi Zhang, Bin Wang, Junchao Hu, Tianyuan Yin, Tao Yue, Na Liu, Yuanyuan Liu
188 Views, 42 PDF Downloads

Three-dimensional (3D) bioprinting is an important technology for fabricating artificial tissue. To effectively reconstruct the multiscale structure and multi-material gradient of natural tissues and organs, 3D bioprinting has been increasingly developed into multi-process composite mode. The current 3D composite bioprinting is a combination of two or more printing processes, and oftentimes, physical field regulation that can regulate filaments or cells during or after printing may be involved. Correspondingly, both path planning strategy and process control all become more complex. Hence, the
computer-aided design and computer-aided manufacturing (CAD/CAM) system that is traditionally used in 3D printing system
is now facing challenges. Thus, the scale information that cannot be modeled in the CAD process should be considered in
the design of CAM by adding a process management module in the traditional CAD/CAM system and add more information
reflecting component gradient in the path planning strategy.


Review Articles

by Shokouh Attarilar, Mahmoud Ebrahimi, Faramarz Djavanroodi, Yuanfei Fu, Liqiang Wang, Junlin Yang
218 Views, 36 PDF Downloads

Additive manufacturing (AM) is among the most attractive methods to produce implants, the processes are very swift and it can be precisely controlled to meet patient’s requirement since they can be produced in exact shape, dimension, and even texture of different living tissues. Until now, lots of methods have emerged and used in this field with diverse characteristics. This review aims to comprehensively discuss 3D printing (3DP) technologies to manufacture metallic implants, especially on techniques and procedures. Various technologies based on their main properties are categorized, the effecting parameters are introduced, and
the history of AM technology is briefly analyzed. Subsequently, the utilization of these AM-manufactured components in medicine along with their effectual variables is discussed, and special attention is paid on to the production of porous scaffolds, taking pore size, density, etc., into consideration. Finally, 3DP of the popular metallic systems in medical applications such as titanium, Ti6Al4V, cobalt-chromium alloys, and shape memory alloys are studied. In general, AM manufactured implants need to comply with important requirements such as biocompatibility, suitable mechanical properties (strength and elastic modulus), surface conditions, custom-built designs, fast production, etc. This review aims to introduce the AM technologies in implant applications and find new ways to design more sophisticated methods and compatible implants that mimic the desired tissue functions.


Review Articles

by Colin Sherborne, Frederik Claeyssens
86 Views, 13 PDF Downloads

This review paper explores the potential of combining emulsion-based inks with additive manufacturing (AM) to produce filters for respiratory protective equipment (RPE) in the fight against viral and bacterial infections of the respiratory tract. The value of these filters has been highlighted by the current severe acute respiratory syndrome coronavirus-2 crisis where the importance of protective equipment for health care workers cannot be overstated. Three-dimensional (3D) printing of emulsions is an emerging technology built on a well-established field of emulsion templating to produce porous materials such as polymerized high internal phase emulsions (polyHIPEs). PolyHIPE-based porous polymers have tailorable porosity from the submicron to 100 s of μm. Advances in 3D printing technology enables the control of the bulk shape while a micron porosity is controlled independently by the emulsion-based ink. Herein, we present an overview of the current polyHIPE-based filter applications. Then, we discuss the current use of emulsion templating combined with stereolithography and extrusion-based AM technologies. The benefits and limitation of various AM techniques are discussed, as well as considerations for a scalable manufacture of a polyHIPE-based RPE.


Author Guidelines

Before submitting for publication, please check that your manuscript has been prepared in accordance to the step-by-step instructions for submitting a manuscript to our online submission system.

Manuscript Format

Your manuscript should be in MS Word. You are advised to download the template when preparing your submissions to this journal. All manuscripts must be written in clear, comprehensible English. Both British and American English are accepted. Usage of non-English words should be kept to a minimum and all must be italicized, with the exception of “e.g.” and “i.e.” If you have concerns about the level of English in your submission, please ensure that it is proofread before submission by a native English speaker or a scientific editing service.

Types of submission

International Journal of Bioprinting accepts original articles, reviews, letters, editorials, commentaries, perspectives and position papers. Please read this section further for the definition of each type and select the appropriate option in the submission system. Submissions exceeding the suggested requirements, such as total manuscript length, will still be processed for consideration and peer review. However, article processing charges will differ in exceptional cases (e.g. a raw text file exceeding 2MB, etc.) The article processing charge will then be determined on a case-by-case basis.

Original Articles: Original Articles are scientific articles based on original, basic and applied research and/or analysis.

This manuscript type typically has 5 tables and figures in total, approximately 40 references, and 7,000 words (inclusive of Abstract and References).

Review Articles: A Review Article summarizes and highlights recent developments and current/future trends of the field.

This manuscript type typically has 5 tables and figures in total, approximately 70 references, and 7,000 words (inclusive of Abstract and References).

Short Communications: Short Communications are short articles that present original and significant findings on a particular problem or novel findings that is anticipated to have significant impact.

The length of a Short Communication, including the Abstract and References, should not exceed 4,000 words. The article should contain Abstract (not more than 150 words), Background, Materials and Method, Results, Discussion, Conclusion and References, and contain no more than 5 figures and/or tables. Typically, this manuscript type has 15 references.

Perspective Articles: Perspective Articles contain author's personal opinions on a subject/topic. Unlike Reviews, Perspective articles may cover a more specific, narrow part of the field. However, these are still required to uphold the spirit of academia to be objective as well as aim to initiate or further discussions and novel experimental procedures in the field.

This manuscript type typically has 5 tables and figures in total, approximately 70 references, and 7,000 words (inclusive of Abstract and References).

Commentaries: This type of article contains unsolicited commentaries or analysis from reader(s) targeting specific published articles in the journal.

This manuscript type typically has 3 tables and figures in total, approximately 20 references, and 3,500 words (inclusive of Abstract and References).

Clinical Case Studies: A Clinical Case Study presents the details and results from the clinical application of bioprinted products or equivalents on patient cases, and highlights specific instances of interesting phenomena. Submissions will be evaluated on a case-by-case basis.

This manuscript type typically has 5 tables and figures in total, approximately 20 references, and 3,000 words (inclusive of Abstract and References).

Methods: Methods articles present new or improved version of experimental methods, tests or procedures pertaining to the field of bioprinting.

This manuscript type typically has 10 tables and figures in total, approximately 30 references, and 5,000 words (inclusive of Abstract and References).

Letters to the Editor-in-Chief/Authors: Letters to the Editor-in-Chief/Authors consist of comments from reader(s) about individual articles. These letters must be constructive and contribute to the development of individual articles published or the entire journal. Letters containing new ideas, supporting data or data criticizing the article may be subjected to peer-review (determined on a case-by-case basis by the journal's editorial team). Authors should specify the intended recipient of the letters, i.e. Editor-in-Chief or specific author(s).

This manuscript type typically has 2 tables and figures in total, no more than 10 references, and 2,000 words (inclusive of References). No Abstract is required.

Reports: A Report summarizes the execution of a collaborative research program that is directly related to the advancement of bioprinting. Submissions are usually solicited by the editors.

This manuscript type typically has 5 tables and figure in total, 20 references, and 5,000 words (inclusive of Abstract and References).

Position Papers: A Position Paper reflects the official opinion of an organization (e.g. government body, funding agency, etc.).

This manuscript type typically has 2 tables and figure in total, not more than 15 references, and 3,500 words (inclusive of References). An Abstract is not required in a Position Paper.

Editorials: An Editorial is a solicited, concise commentary that highlights prominent topics in particular issue. Commonly, the Editorials are the official opinions of the editors of the journal or special issue.

An Editorial should not exceed 1,000 words (inclusive of References). Typically, an Abstract is not required and only one figure/table is allowed.

Book Reviews: Book Reviews provide an overview of new publications (books) from the area of bioprinting. Brief summary, focus, argumentation and impact of the book should be provided.

A Book Review is typically of the length of 400-500 words. No Abstract, References, figures and tables are required.

Extended Conference Papers: An Extended Conference Paper is the conference paper version of an original research article that presents the new findings and in-depth discussion of a certain topic.

The manuscripts that do not have relevance to the Focus and Scope of International Journal of Bioprinting will be rejected.

The requirements for Extended Conference Papers are as follows:

-           The Extended Conference Paper must have at least 30% new material and include a citation to the conference paper. In addition to the 30% new material which is acquired through additional experimentation, analyses and proposal of new ideas or theories, the original content that can be found in the conference paper must be paraphrased, i.e. rewriting the sentences or changing the sentence structure. The 30% new material may also include the clarifications in response to questions raised during the presentation at the conference.

-           The Extended Conference Paper must have a new title and a new abstract that are different from the corresponding title in the conference paper. Nevertheless, the new title and new abstract must retain the ‘motivation, methods and conclusions’ of the paper presented at the conference presentation. More data in the form of tables and figures should be added. The results should be discussed in-depth with more examples and explanations. In this regard, more references will be needed.

-           The conference paper must be cited.

-           The order in which the authors’ names listed on the conference paper can be changed, but no new names can be added to and no existing names can be removed from the author list in the Extended Conference Paper.

-           A PDF copy of the conference paper must be submitted along with the submission of the Extended Conference Paper.

-           The format and style of an Extended Conference Paper is similar to the ones of an Original Article. Refer to the specific requirements of the Original Articles.

Erratum: Authors should contact the editors of International Journal of Bioprinting ( if certain errors made by the journal are found. The editors will evaluate the impact of the errors and decide on the appropriate course of action. Any corrections to a paper are published at the sole discretion of the editors.

Corrigendum: Authors should contact the editors of International Journal of Bioprinting ( if certain errors made by the authors are found. The editors will evaluate the impact of the errors and decide on the appropriate course of action. Any corrections to a paper are published at the sole discretion of the editors.


Cover letter

All submissions should include a cover letter as a separate file. The cover letter is confidential and will be read only by the editors. It will not be seen by reviewers. A cover letter should contain the following:

  • a brief explanation of what was previously known, the conceptual advancement with the findings and its significance to broad readership
  • any associated accession numbers or DOIs of the corresponding preprint version of the submission if it has been deposited on a preprint server
  • recommendations of up to four academically qualified reviewers (including name, email address and affiliation)
  • exclusion of individuals who might have conflict of interest from reviewing the work (including name, email address and affiliation)
  • a statement that “neither the manuscript nor any significant part of it is under consideration for publication elsewhere or has appeared elsewhere in a manner that could be construed as a prior or duplication of the same work”
  • conflict of interest statement
  • a list of names and email addresses of all co-authors of the work who have already seen and approved the manuscript


The title should capture the conceptual significance for a broad audience. The title should not be more than 50 words and should be able to give readers an overall view of the paper’s significance. Titles should avoid using uncommon jargons, abbreviations and punctuation.

List of Authors

The names of authors must be spelled out rather than set in initials along with their affiliations. Authors should be listed according to the extent of their contribution, with the major contributor listed first. All corresponding authors should be identified with an asterisk. Affiliations should contain the following core information: department, institution, city, state, postal code, and country. For contact, email address of at least one corresponding author must be included. Please note that all authors must view and approve the final version of the manuscript before submitting.


Articles must include an abstract containing a maximum of 200 words. The purpose of abstract is to provide sufficient information for a reader to determine whether or not to proceed to the full text of the article. After the abstract, please give 5 keywords; please avoid using the same words as those already used in the title, separate terms with a semi-colon (term1; term2; term3).

Section Headings

Please number the section headings (e.g. 1, 2, 3, 4, etc.) in boldface. Likewise, use boldface to identify subheadings too but please distinguish it from major headings using numbers (e.g. 1.1, 1.2, 2.1, 2.2, etc.) Further subsections of subheadings should be differentiated by boldface and italics font with the numbers (1), (2), (3), etc.


The introduction should provide a background that gives a broad readership an overall outlook of the field and the research performed. It tackles a problem and states its important regarding with the significance of the study. Introduction can conclude with a brief statement of the aim of the work and a comment about whether that aim was achieved.

Materials and Methods

This section provides the general experimental design and methodologies used. The aim is to provide enough detail to for other investigators to fully replicate the results. It is also required to facilitate better understanding of the results obtained. Protocols and procedures for new methods must be included in detail for the reproducibility of the experiments. Informed consent should be obtained from patients or parents before the experiments start and should be mentioned in this section.


Ethics information include IACUC permit numbers and/or IRB name, if applicable. This information should be included in a subheading labelled "Ethics Statement" in the "Methods" section of the manuscript file, in as much detail as possible.


This section can be divided into subheadings and focuses on the results of the experiments performed.


This section should provide the significance of the results and identify the impact of the research in a broader context. It should not be redundant or similar to the content of the results section.


Please use the conclusion section for interpretation only, and not to summarize information already presented in the text or abstract.

Conflict of Interest

All authors are required, at the time of submission, to declare all activities that have the potential to be deemed as a source of competing (commercial) interest in relation to their submitted manuscript, as consistent with the recommendations from the International Committee of Medical Editors (ICMJE). Examples of such activities could include personal or work-related relationships, events, etc. The disclosure should also include all sources of revenue paid (or promised to be paid) directly to authors or their institution on your behalf over the 36 months before submission of the relevant work. Authors who have nothing to declare are encouraged to add "No conflict of interest was reported by all authors" in this section.

During submission, the Conflict of Interest statement should be included in both the cover letter and manuscript (beneath the Acknowledgments section).

Authors will be requested to complete ICMJE form for Disclosure of Potential Conflict of Interest when they are invited to submit a revision. Failure to do return a completed form will result in a delay to editorial and peer review progress. If necessary, the initial disclosure statement provided by the authors will be subject to edits for grammar corrections by the editors. Failure to comply with the conflict of interest disclosure statement requirement may result in rejection of the submissions.


Authors should declare all financial and non-financial support that have the potential to be deemed as a source of competing interest in relations to their submitted manuscript in this section. Financial supports are generally in the form of grants, royalties, consulting fees and others. Examples of non-financial support could include the following: externally-supplied equipment/biological sources, writing assistance, administrative support, contributions from non-authors, etc.


This section is optional and is for all materials (e.g. advanced technical details) that has been excluded from the main text but remain essential to the readers in understanding the manuscripts. This section is not for supplementary figures. Authors are advised to refer to the section on Supplementary Figures for such submissions.


The text of the manuscript should be in Microsoft Word or Latex. The length of the manuscript cannot be more than 50,000 characters (inclusive of spaces), or approximately 7,000 words.

Nomenclature for genes and proteins

This journal aims to reach researchers all over the globe. Hence, for reviewers’ and readers’ ease in comprehension, authors are highly encouraged to use the appropriate gene and protein nomenclature. Authors may prefer to utilize resources such as


Authors should include all figures into the manuscript and submit it as one file. Figures include photographs, scanned images, graphs, charts and schematic diagrams. Figures submitted should avoid unnecessary decorative effects (e.g. 3D graphs), as well as should be minimally processed (e.g. changes in brightness and contrast applied uniformly for the entire figure). It should also be set against a white background. Please remember to label all figures (e.g. axis, etc.) and add captions below the figure, as required. These captions should be numbered (e.g. Figure 1, Figure 2, etc.) in boldface. All figures must have a brief title (also known as caption) that describes the entire figure without citing specific panels, followed by a legend, defined as description of each panel. Please identify each panel with uppercase letters in parenthesis (e.g. (A), (B), (C), etc.)

The preferred file formats for any separately submitted figure(s) are TIFF or JPEG. All figures should be legible in print form and of optimal resolution. Optimal resolutions preferred are 300 dots per inch (dpi) for RBG coloured, 600 dpi for greyscale and 1,200 dpi for line art. Although there is no file-size limitation imposed, authors are highly encouraged to compress their figures to an ideal size without unduly affecting the legibility and resolution of figures. This will also speed up the process of uploading in the submission system, if necessary.

The Editor-in-Chief and Publisher reserve the right to request from author(s) the high-resolution files and unprocessed data and metadata files, should the need arise at any point after manuscript submission for reasons such as production, evaluation or other purposes. The file name should allow for ease in identifying the associated manuscript submitted.

Tables, lists and equations

Tables created using Microsoft Word table function are preferred. The tables should include a title at the top. Titles and footnotes/legends should be concise. These must be submitted in the manuscript. Likewise, lists and equations should be properly aligned and its meaning clear to readers. For listing items within the main body of the manuscript, please use Roman numbers in parenthesis (e.g. (i), (ii), (iii), (iv), etc.).

Supplementary files

This section is optional and contains all materials and figures that have been excluded from the entire manuscript. These materials, figures or additional information are relevant to the manuscript but remain non-essential to readers’ understanding of the manuscript’s main content. All supplementary information should be submitted as a separate file in Step 4 during submission. Please ensure the names of such files contain ‘suppl. info’. Videos may be included in this section.

In-text citations

Reference citations in the text should be numbered consecutively in superscript square brackets. Some examples:

  1. Negotiation research spans many disciplines[3,4].
  2. This result was later contradicted by Becker and Seligman[5].
  3. This effect has been widely studied[1–3,7].

Personal communications and unpublished works can only be used in the main text of the submission and are not to be placed in the Reference section. Authors are advised to limit such usage to the minimum. These should also be easily identifiable by stating the authors and year of such unpublished works or personal communications, and the word ‘Unpublished’ in parenthesis.

E.g. (Smith J, 2000, Unpublished)


This section is compulsory and should be placed at the end of all manuscripts. Do not use footnotes or endnotes as a substitute for a reference list. The list of references should only include works that are cited in the text and that have been published or accepted for publication. Personal communications and unpublished works should be excluded from this section. The EndNote output style of IJB can be downloaded at here.

For the reference list, all authors must be stated. Authors being referenced are listed with their surname followed by their initials. All references should be numbered (e.g. 1, 2, 3, etc.) and sequenced according to the order they appear as the in-text citations. References should follow the following pattern: Author(s), followed by year of publication, title of publication, abbreviated journal name in italics, volume number, issue number in parenthesis and lastly, page range. If the referred article has more than three authors, list only the first three authors and abbreviate the remaining authors as the italicized ‘et al.’ (meaning "and others"). If the DOI is available, please include it after the page range. Examples of references for different types of publications are as follows;


Journal article (print) with one to three authors:

Younger P, 2004, Using the internet to conduct a literature search. Nurs Stand, 19(6): 45–51.

Journal article (print) with more than three authors:

Gamelin F X, Baquet G, Berthoin S, et al., 2009, Effect of high intensity intermittent training on heart rate variability in prepubescent children. Eur J Appl Physiol, 105(1): 731–738.

Journal article (online) with one to three authors:

Jackson D, Firtko A and Edenborough M, 2007, Personal resilience as a strategy for surviving and thriving in the face of workplace adversity: A literature review. J Adv Nurs, 60(1): 1–9.

Journal article (online) with more than three authors:

Hargreave M, Jensen A, Nielsen T S S, et al., 2015, Maternal use of fertility drugs and risk of cancer in children — A nationwide population-based cohort study in Denmark. Int J Cancer, 136(8): 1931–1939.


Book with one to three authors:

Schneider Z, Whitehead D and Elliott D, 2007, Nursing and Midwifery Research: Methods and Appraisal for Evidence-based Practice, 3rd edn, Elsevier Australia, Marrickville, NSW, 112–130.

Book with more than three authors

Davis M, Charles L, Curry M J, et al., 2003, Challenging Spatial Norms, Routledge, London, 12–30.

Chapter or article in book

Knowles M S, (eds) 1986, Independent study, in Using Learning Contracts, Jossey-Bass, San Francisco, 89–96.


Preprint article with one to three authors:

Ulgen A, Gurkut O, Li W, 2019, Potential Predictive Factors for Breast Cancer Subtypes from a North Cyprus Cohort Analysis. medRxiv.

Preprint article with more than three authors:

Wu S, Sun P, Li R, et al., 2020, Epidemiological Development of Novel Coronavirus Pneumonia in China and Its Forecast. medRxiv.


Proceedings of meetings and symposiums, conference papers:

Chang S S, Liaw L and Ruppenhofer J, (eds) 2000, Proceedings of the twenty-fifth annual meeting of the Berkeley Linguistics Society, February 12–15, 1999: General session and parasession on loan word phenomena. Berkeley Linguistics Society, Berkeley, 12–13.

Conference proceedings (from electronic database):

Wang T, Cook C and Derby B, 2009, Fabrication of a glucose biosensor by piezoelectric inkjet printing. Proceedings of the Third International Conference on Sensor Technologies and Applications, 2009 (SENSORCOM-
, 82–85.

Online document with author names:

Este J, Warren C, Connor L, et al., 2008, Life in the clickstream: The future of journalism, Media Entertainment and Arts Alliance, viewed May 27, 2009, foj_report_final.pdf

Online document without author name:

Developing an argument, n.d., viewed March 30, 2009,


Gale L, 2000, The relationship between leadership and employee empowerment for successful total quality management, thesis, Australasian Digital Thesis database, University of Western Sydney, 110–130.


Standards Australia Online, 2006, Glass in buildings: selection and installation, AS 1288-2006, amended January 31, 2008, SAI Global database, viewed May 19, 2009.

Government report:

National Commission of Audit, 1996, Report to the Commonwealth Government, Australian Government Publishing Service, Canberra.

Government report (online):

Department of Health and Ageing, 2008, Ageing and aged care in Australia, viewed November 10, 2008,

No author:

Guide to agricultural meteorological practices, 1981, 2nd edn, Secretariat of the World Meteorological Organization, Geneva, 10–20.

Note: When referencing an entry from a dictionary or an encyclopedia with no author there is no requirement to include the source in the reference list. In these cases, only cite the title and year of the source in-text. For an authored dictionary/encyclopedia, treat the source as an authored book.


Copyright Notice

By default, authors contributing to International Journal of Bioprinting agree to publish their articles under the Creative Commons Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0), allowing third parties to share their work (copy, distribute, transmit) and to adapt it, under the condition that the authors are given credit, that the work is not used for commercial purposes, and that in the event of reuse or distribution, the terms of this license are made clear. With this license, the authors hold the copyright without restrictions and are allowed to retain publishing rights without restrictions as long as the International Journal of Bioprinting is the original publisher of the articles.

Alternatively, the authors may choose to publish their work under the Creative Commons Attribution 4.0 International License (CC BY 4.0), allowing third parties to distribute, remix, adapt, and build upon authors’ work, even commercially, as long as they credit authors for the original creation. Authors may express explicit request to publish under CC BY 4.0 in the Comments for the Editor column beneath the Copyright Notice.

For more information, refer to the journal’s Copyright and License section.


Privacy Statement

The names and email addresses entered in this journal site will be used exclusively for the stated purposes of this journal and will not be made available for any other purpose or to any other party.


Focus and Scope

International Journal of Bioprinting is an international journal covering the technology, science and clinical application of the broadly defined field of Bioprinting. Bioprinting is defined as the use of 3D printing technology with materials that incorporate viable living cells or biological elements to produce tissue or biotechnological products.

We are interested in the scientific topics spanning all stages of bioprinting process from concept creation to fabrication and beyond. Knowledge generated in these researches must be related to bioprinting.

The journal publishes original research articles on basic and applied research as well as associated social implications of this research. The journal also publishes brief commentaries and reviews. Articles focusing on the practical applications of 3D-printed products are similarly welcome.

Examples of relevant topics include but are not limited to:

Information technologies and basic research

  • Medical scanning and imaging for printable format
  • Data security and validation in medical additive manufacturing
  • Logistic management in bioprinting
  • Mass customization design methodology or platform technology
  • Blueprint for organ printing
  • Automated algorithm for 3D modelling of bioprintable files
  • Research models (e.g. cancer, pre-surgical evaluation, etc.)

Materials and formulation

  • New material and method of preparation
  • Hybrid and composite material system
  • Evaluation technologies for bioprinting process and bioprinted product
  • Biomimetic and bioinspired design and material system
  • Interaction of processing and materials
  • Post-processing of bioprinted medical constructs

Cell source and biotechnology for additive manufacturing

  • Cell source research
  • Large-scale or high throughput cell culture techniques
  • Tissue spheroid research (modelling, analysis, measurement, biological observation, characterization)
  • Interaction of cell-material

3D Bioprinting technologies

  • Bioprinting technologies or 3D printing techniques for direct manipulation of cells and biological elements
  • New printing systems or new printing methodology
  • Optimization methodology 

New design and fabrication paradigm

  • Hybrid approach in medical additive manufacturing
  • Information technologies and software in
  • Architectural design
  • Real time and non-invasive monitoring techniques
  • Maturation techniques of printed construct
  • Bioreactor for printed construct

Applied research purpose & evaluation of 3D printed products

  • Implants and prosthetics
  • Bioprinting
  • Biological tissue model for toxicology testing, drug delivery, drug production-related
  • Scaffold for tissue engineering
  • Regenerative medicine
  • Medical imaging purposes (e.g. 3D-printed probes)
  • Bionic organ
  • Organ printing
  • Personalized drug
  • Biomodels for surgical training and planning
  • Exoskeleton
  • Further optimisation/advantages/limitations
  • Education

Associated social implications

  • Ethics
  • Economic relationships and shifts
  • Policies and regulation
  • Intellectual property (IP-copyright, design protection, patents, and trademarks), licensing
  • Business (e.g. chain supply, management)
  • Environmental impact
  • Community sentiments to 3D-printed products (e.g. healthcare providers, users, etc.)


Peer Review Process

All manuscripts submitted to International Journal of Bioprinting will follow the following procedure:

  • Initial submission is reviewed by in-house editors to ensure adherence to journal policies and for double-blind review
  • Editor-in-chief decides on the manuscript to be sent out for review process and assigns the manuscript to one of the editors according to the particular topic.
  • Editor assigns reviewers from inside the editorial board or outside depending on the topic.
  • After evaluations by the reviewers have been received, the editor-in-chief makes one of the following recommendations: accept, minor revision, major revision, reject and resubmit, and reject.
  • If decision is minor revision, the authors have 7 days to resubmit the revised manuscript.
  • If decision is major revision, the authors have 14 days to resubmit the revised manuscript.
  • Upon resubmission, the same procedure is applied as for the initial submission.
  • Authors may appeal for a rejected submission. Appeal requests must be made in writing to with detailed reasons for the appeal and point by point responses to the reviewers remarks. Decisions on appeals are final without exception.
  • For all manuscripts accepted for publication, the peer review process will be deemed to be completed. The manuscript will proceed to be copyedited, layout edited and proofread before being published online.

Note: You may suggest up to four academically qualified reviewers for consideration. Please insert the current contact details of the reviewer and state the reason(s) for recommendation under the "Comments for the Editor" section. However, please take note that the Editorial team strives to ensure the peer review process is fair and unbiased and hence, there is no guarantee that a recommended reviewer will be approached to perform the peer review.


Publication Frequency



Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.




Special Issue “Bioprinting of 3D Functional Tissue Constructs”: - Call for Papers


Bioprinting is a multidisciplinary technique involving biomaterials, mechanical engineering, life science, and medicine. In recent years, it has attracted extensive attention because of its unique capabilities in producing complex 3D architectures and positioning living cells within biomaterials in a controlled and reproducible manner. The development of bioprinting has laid the foundation for 3D living tissue constructs that replicate the physiological environments, sustain long-term culture, and function as the native tissues. For example, there is growing interest in the bioprinting of large, functional tissue constructs with biomimetic vascular networks, micro/nanoscale architectures similar to native extracellular microenvironment, and multiple cell types for such biomedical applications as tissue engineering, regenerative medicine, drug screening, and 3D tissue models.

Bioprinting should overcome a few challenges for the generation of living tissue constructs with more complex features and tissue-specific functions on a biologically-relevant scale. For example, further development of bioinks should achieve optimal rheological and biological properties for successful printing, cell viability and growth. Recapitulation of the heterocellular nature of complex native tissues requires the accurate spatial arrangement of multiple cell types and material components to program their interactions during growth. Perfusable vascular-like networks should be rationally designed and fabricated to support the growth of 3D large-scale tissue constructs. To address these challenges, this special issue will cover scientific advances and emerging trends in bioprinting of 3D functional tissue constructs including novel bioinks, architectural design, innovative printing processes with higher resolution, electronic component integration, and biological applications.

Posted: 2021-01-15 More...

Inclusion of International Journal of Bioprinting in Science Citation Index Expanded


With immense pleasure, we hereby announce that the International Journal of Bioprinting has already been accepted for inclusion by Science Citation Index Expanded (SCIE), one of the Web of Science Core Collections. The journal will be indexed in two categories of SCIE – Engineering (Biomedical) and Materials Science (Biomaterials). Coverage will begin with Volume 4 Issue 1 of the journal, and its Journal Impact Factor will be released around June 2021.

This achievement is a new milestone marked by the continuous efforts of Professor Chee Kai Chua (Editor-in-Chief), Professor Wai Yee Yeong (Associate Editor), Jiankang He (Associate Editor), Dr. Jia An (Assistant Editor), fellow Editorial Board Members of the International Journal of Bioprinting, and our editors (Dr. Ian Foo Nian Wong and Ms. Puvanesswaray Ramakrishnan). We are also indebted to all the reviewers whose expertise and evaluation form the basis of the articles’ quality and standards.

International Journal of Bioprinting will continue to uphold its integrity in science reporting and article quality.

Posted: 2020-12-08
More Announcements...